include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,8}*1440a
if this polytope has a name.
Group : SmallGroup(1440,4612)
Rank : 3
Schlafli Type : {6,8}
Number of vertices, edges, etc : 90, 360, 120
Order of s0s1s2 : 15
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,4}*720
3-fold quotients : {6,8}*480b
6-fold quotients : {6,4}*240c
12-fold quotients : {6,4}*120
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,15)( 2,16)( 3,13)( 4,14)( 7, 8)( 9,28)(10,25)(11,26)(12,27)(17,29)
(18,30)(19,32)(20,31)(21,22)(33,36)(37,40)(38,39)(42,43);;
s1 := ( 5, 6)( 7, 8)( 9,30)(10,29)(11,32)(12,31)(13,37)(14,39)(15,40)(16,38)
(17,34)(18,35)(19,36)(20,33)(21,27)(22,26)(23,28)(24,25)(41,42);;
s2 := ( 1,17)( 2,18)( 3,20)( 4,19)( 5,35)( 6,34)( 7,33)( 8,36)( 9,11)(10,12)
(13,31)(14,32)(15,29)(16,30)(21,22)(25,27)(26,28)(37,38)(39,40);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(43)!( 1,15)( 2,16)( 3,13)( 4,14)( 7, 8)( 9,28)(10,25)(11,26)(12,27)
(17,29)(18,30)(19,32)(20,31)(21,22)(33,36)(37,40)(38,39)(42,43);
s1 := Sym(43)!( 5, 6)( 7, 8)( 9,30)(10,29)(11,32)(12,31)(13,37)(14,39)(15,40)
(16,38)(17,34)(18,35)(19,36)(20,33)(21,27)(22,26)(23,28)(24,25)(41,42);
s2 := Sym(43)!( 1,17)( 2,18)( 3,20)( 4,19)( 5,35)( 6,34)( 7,33)( 8,36)( 9,11)
(10,12)(13,31)(14,32)(15,29)(16,30)(21,22)(25,27)(26,28)(37,38)(39,40);
poly := sub<Sym(43)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2 >;
References : None.
to this polytope