include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {60,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {60,6,2}*1440c
if this polytope has a name.
Group : SmallGroup(1440,5676)
Rank : 4
Schlafli Type : {60,6,2}
Number of vertices, edges, etc : 60, 180, 6, 2
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {30,6,2}*720c
3-fold quotients : {60,2,2}*480
4-fold quotients : {15,6,2}*360
5-fold quotients : {12,6,2}*288b
6-fold quotients : {30,2,2}*240
9-fold quotients : {20,2,2}*160
10-fold quotients : {6,6,2}*144c
12-fold quotients : {15,2,2}*120
15-fold quotients : {12,2,2}*96
18-fold quotients : {10,2,2}*80
20-fold quotients : {3,6,2}*72
30-fold quotients : {6,2,2}*48
36-fold quotients : {5,2,2}*40
45-fold quotients : {4,2,2}*32
60-fold quotients : {3,2,2}*24
90-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 11)( 7, 15)( 8, 14)( 9, 13)( 10, 12)( 16, 31)
( 17, 35)( 18, 34)( 19, 33)( 20, 32)( 21, 41)( 22, 45)( 23, 44)( 24, 43)
( 25, 42)( 26, 36)( 27, 40)( 28, 39)( 29, 38)( 30, 37)( 47, 50)( 48, 49)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 76)( 62, 80)( 63, 79)
( 64, 78)( 65, 77)( 66, 86)( 67, 90)( 68, 89)( 69, 88)( 70, 87)( 71, 81)
( 72, 85)( 73, 84)( 74, 83)( 75, 82)( 91,136)( 92,140)( 93,139)( 94,138)
( 95,137)( 96,146)( 97,150)( 98,149)( 99,148)(100,147)(101,141)(102,145)
(103,144)(104,143)(105,142)(106,166)(107,170)(108,169)(109,168)(110,167)
(111,176)(112,180)(113,179)(114,178)(115,177)(116,171)(117,175)(118,174)
(119,173)(120,172)(121,151)(122,155)(123,154)(124,153)(125,152)(126,161)
(127,165)(128,164)(129,163)(130,162)(131,156)(132,160)(133,159)(134,158)
(135,157);;
s1 := ( 1,112)( 2,111)( 3,115)( 4,114)( 5,113)( 6,107)( 7,106)( 8,110)
( 9,109)( 10,108)( 11,117)( 12,116)( 13,120)( 14,119)( 15,118)( 16, 97)
( 17, 96)( 18,100)( 19, 99)( 20, 98)( 21, 92)( 22, 91)( 23, 95)( 24, 94)
( 25, 93)( 26,102)( 27,101)( 28,105)( 29,104)( 30,103)( 31,127)( 32,126)
( 33,130)( 34,129)( 35,128)( 36,122)( 37,121)( 38,125)( 39,124)( 40,123)
( 41,132)( 42,131)( 43,135)( 44,134)( 45,133)( 46,157)( 47,156)( 48,160)
( 49,159)( 50,158)( 51,152)( 52,151)( 53,155)( 54,154)( 55,153)( 56,162)
( 57,161)( 58,165)( 59,164)( 60,163)( 61,142)( 62,141)( 63,145)( 64,144)
( 65,143)( 66,137)( 67,136)( 68,140)( 69,139)( 70,138)( 71,147)( 72,146)
( 73,150)( 74,149)( 75,148)( 76,172)( 77,171)( 78,175)( 79,174)( 80,173)
( 81,167)( 82,166)( 83,170)( 84,169)( 85,168)( 86,177)( 87,176)( 88,180)
( 89,179)( 90,178);;
s2 := ( 16, 31)( 17, 32)( 18, 33)( 19, 34)( 20, 35)( 21, 36)( 22, 37)( 23, 38)
( 24, 39)( 25, 40)( 26, 41)( 27, 42)( 28, 43)( 29, 44)( 30, 45)( 61, 76)
( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)( 69, 84)
( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)(106,121)(107,122)
(108,123)(109,124)(110,125)(111,126)(112,127)(113,128)(114,129)(115,130)
(116,131)(117,132)(118,133)(119,134)(120,135)(151,166)(152,167)(153,168)
(154,169)(155,170)(156,171)(157,172)(158,173)(159,174)(160,175)(161,176)
(162,177)(163,178)(164,179)(165,180);;
s3 := (181,182);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(182)!( 2, 5)( 3, 4)( 6, 11)( 7, 15)( 8, 14)( 9, 13)( 10, 12)
( 16, 31)( 17, 35)( 18, 34)( 19, 33)( 20, 32)( 21, 41)( 22, 45)( 23, 44)
( 24, 43)( 25, 42)( 26, 36)( 27, 40)( 28, 39)( 29, 38)( 30, 37)( 47, 50)
( 48, 49)( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 76)( 62, 80)
( 63, 79)( 64, 78)( 65, 77)( 66, 86)( 67, 90)( 68, 89)( 69, 88)( 70, 87)
( 71, 81)( 72, 85)( 73, 84)( 74, 83)( 75, 82)( 91,136)( 92,140)( 93,139)
( 94,138)( 95,137)( 96,146)( 97,150)( 98,149)( 99,148)(100,147)(101,141)
(102,145)(103,144)(104,143)(105,142)(106,166)(107,170)(108,169)(109,168)
(110,167)(111,176)(112,180)(113,179)(114,178)(115,177)(116,171)(117,175)
(118,174)(119,173)(120,172)(121,151)(122,155)(123,154)(124,153)(125,152)
(126,161)(127,165)(128,164)(129,163)(130,162)(131,156)(132,160)(133,159)
(134,158)(135,157);
s1 := Sym(182)!( 1,112)( 2,111)( 3,115)( 4,114)( 5,113)( 6,107)( 7,106)
( 8,110)( 9,109)( 10,108)( 11,117)( 12,116)( 13,120)( 14,119)( 15,118)
( 16, 97)( 17, 96)( 18,100)( 19, 99)( 20, 98)( 21, 92)( 22, 91)( 23, 95)
( 24, 94)( 25, 93)( 26,102)( 27,101)( 28,105)( 29,104)( 30,103)( 31,127)
( 32,126)( 33,130)( 34,129)( 35,128)( 36,122)( 37,121)( 38,125)( 39,124)
( 40,123)( 41,132)( 42,131)( 43,135)( 44,134)( 45,133)( 46,157)( 47,156)
( 48,160)( 49,159)( 50,158)( 51,152)( 52,151)( 53,155)( 54,154)( 55,153)
( 56,162)( 57,161)( 58,165)( 59,164)( 60,163)( 61,142)( 62,141)( 63,145)
( 64,144)( 65,143)( 66,137)( 67,136)( 68,140)( 69,139)( 70,138)( 71,147)
( 72,146)( 73,150)( 74,149)( 75,148)( 76,172)( 77,171)( 78,175)( 79,174)
( 80,173)( 81,167)( 82,166)( 83,170)( 84,169)( 85,168)( 86,177)( 87,176)
( 88,180)( 89,179)( 90,178);
s2 := Sym(182)!( 16, 31)( 17, 32)( 18, 33)( 19, 34)( 20, 35)( 21, 36)( 22, 37)
( 23, 38)( 24, 39)( 25, 40)( 26, 41)( 27, 42)( 28, 43)( 29, 44)( 30, 45)
( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)
( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)(106,121)
(107,122)(108,123)(109,124)(110,125)(111,126)(112,127)(113,128)(114,129)
(115,130)(116,131)(117,132)(118,133)(119,134)(120,135)(151,166)(152,167)
(153,168)(154,169)(155,170)(156,171)(157,172)(158,173)(159,174)(160,175)
(161,176)(162,177)(163,178)(164,179)(165,180);
s3 := Sym(182)!(181,182);
poly := sub<Sym(182)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope