include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,8}*1440b
Also Known As : {5,8}4. if this polytope has another name.
Group : SmallGroup(1440,5843)
Rank : 3
Schlafli Type : {5,8}
Number of vertices, edges, etc : 90, 360, 144
Order of s0s1s2 : 4
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,8}*720b
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 6)( 4, 9)( 5, 7)( 8,10);;
s1 := ( 1, 2)( 3, 4)( 5,10)( 6, 7)( 8, 9);;
s2 := ( 2, 7)( 4,10)( 5, 6)( 8, 9)(11,12);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(12)!( 1, 3)( 2, 6)( 4, 9)( 5, 7)( 8,10);
s1 := Sym(12)!( 1, 2)( 3, 4)( 5,10)( 6, 7)( 8, 9);
s2 := Sym(12)!( 2, 7)( 4,10)( 5, 6)( 8, 9)(11,12);
poly := sub<Sym(12)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope