include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,6}*1440f
if this polytope has a name.
Group : SmallGroup(1440,5853)
Rank : 3
Schlafli Type : {10,6}
Number of vertices, edges, etc : 120, 360, 72
Order of s0s1s2 : 30
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,3}*720b, {10,6}*720b, {10,6}*720c
3-fold quotients : {10,6}*480c
4-fold quotients : {10,3}*360
6-fold quotients : {5,6}*240b, {10,3}*240, {10,6}*240c, {10,6}*240d, {10,6}*240e, {10,6}*240f
12-fold quotients : {5,3}*120, {5,6}*120b, {5,6}*120c, {10,3}*120a, {10,3}*120b
24-fold quotients : {5,3}*60
60-fold quotients : {2,6}*24
120-fold quotients : {2,3}*12
180-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,15)(13,16);;
s1 := ( 1, 3)( 2, 4)( 5, 8)( 6, 7)(12,16)(13,15);;
s2 := ( 1, 2)( 3, 9)( 4,10)( 5, 7)( 6, 8)(11,12)(13,16)(14,15);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(16)!( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,15)(13,16);
s1 := Sym(16)!( 1, 3)( 2, 4)( 5, 8)( 6, 7)(12,16)(13,15);
s2 := Sym(16)!( 1, 2)( 3, 9)( 4,10)( 5, 7)( 6, 8)(11,12)(13,16)(14,15);
poly := sub<Sym(16)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope