include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {15,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,6,2}*1440c
if this polytope has a name.
Group : SmallGroup(1440,5853)
Rank : 4
Schlafli Type : {15,6,2}
Number of vertices, edges, etc : 60, 180, 24, 2
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {15,6,2}*720
3-fold quotients : {5,6,2}*480b
6-fold quotients : {5,3,2}*240, {5,6,2}*240b, {5,6,2}*240c
12-fold quotients : {5,3,2}*120
60-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 5)( 7, 8)( 9,10);;
s1 := (3,4)(6,7)(8,9);;
s2 := ( 1, 2)( 7,10)( 8, 9);;
s3 := (11,12);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(12)!( 4, 5)( 7, 8)( 9,10);
s1 := Sym(12)!(3,4)(6,7)(8,9);
s2 := Sym(12)!( 1, 2)( 7,10)( 8, 9);
s3 := Sym(12)!(11,12);
poly := sub<Sym(12)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s0*s1*s0*s1 >;
to this polytope