Polytope of Type {2,6,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,10}*1440c
if this polytope has a name.
Group : SmallGroup(1440,5853)
Rank : 4
Schlafli Type : {2,6,10}
Number of vertices, edges, etc : 2, 36, 180, 60
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,10}*720
   3-fold quotients : {2,6,10}*480f
   6-fold quotients : {2,3,10}*240a, {2,6,5}*240c
   12-fold quotients : {2,3,5}*120
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 7)( 9,10)(11,12);;
s2 := ( 3, 4)( 5, 6)( 8, 9)(11,12);;
s3 := ( 3, 4)( 9,11)(10,12);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(12)!(1,2);
s1 := Sym(12)!( 6, 7)( 9,10)(11,12);
s2 := Sym(12)!( 3, 4)( 5, 6)( 8, 9)(11,12);
s3 := Sym(12)!( 3, 4)( 9,11)(10,12);
poly := sub<Sym(12)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope