include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,6,4}*1440
Also Known As : {{10,6|2},{6,4}4}. if this polytope has another name.
Group : SmallGroup(1440,5890)
Rank : 4
Schlafli Type : {10,6,4}
Number of vertices, edges, etc : 10, 90, 36, 12
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {2,6,4}*288
9-fold quotients : {10,2,4}*160
10-fold quotients : {2,6,4}*144
18-fold quotients : {5,2,4}*80, {10,2,2}*80
36-fold quotients : {5,2,2}*40
45-fold quotients : {2,2,4}*32
90-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)
(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)
(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)
(82,85)(83,84)(87,90)(88,89);;
s1 := ( 1,47)( 2,46)( 3,50)( 4,49)( 5,48)( 6,57)( 7,56)( 8,60)( 9,59)(10,58)
(11,52)(12,51)(13,55)(14,54)(15,53)(16,77)(17,76)(18,80)(19,79)(20,78)(21,87)
(22,86)(23,90)(24,89)(25,88)(26,82)(27,81)(28,85)(29,84)(30,83)(31,62)(32,61)
(33,65)(34,64)(35,63)(36,72)(37,71)(38,75)(39,74)(40,73)(41,67)(42,66)(43,70)
(44,69)(45,68);;
s2 := ( 1,16)( 2,17)( 3,18)( 4,19)( 5,20)(11,41)(12,42)(13,43)(14,44)(15,45)
(21,36)(22,37)(23,38)(24,39)(25,40)(46,61)(47,62)(48,63)(49,64)(50,65)(56,86)
(57,87)(58,88)(59,89)(60,90)(66,81)(67,82)(68,83)(69,84)(70,85);;
s3 := (16,41)(17,42)(18,43)(19,44)(20,45)(21,31)(22,32)(23,33)(24,34)(25,35)
(26,36)(27,37)(28,38)(29,39)(30,40)(61,86)(62,87)(63,88)(64,89)(65,90)(66,76)
(67,77)(68,78)(69,79)(70,80)(71,81)(72,82)(73,83)(74,84)(75,85);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(90)!( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)
(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)
(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)
(78,79)(82,85)(83,84)(87,90)(88,89);
s1 := Sym(90)!( 1,47)( 2,46)( 3,50)( 4,49)( 5,48)( 6,57)( 7,56)( 8,60)( 9,59)
(10,58)(11,52)(12,51)(13,55)(14,54)(15,53)(16,77)(17,76)(18,80)(19,79)(20,78)
(21,87)(22,86)(23,90)(24,89)(25,88)(26,82)(27,81)(28,85)(29,84)(30,83)(31,62)
(32,61)(33,65)(34,64)(35,63)(36,72)(37,71)(38,75)(39,74)(40,73)(41,67)(42,66)
(43,70)(44,69)(45,68);
s2 := Sym(90)!( 1,16)( 2,17)( 3,18)( 4,19)( 5,20)(11,41)(12,42)(13,43)(14,44)
(15,45)(21,36)(22,37)(23,38)(24,39)(25,40)(46,61)(47,62)(48,63)(49,64)(50,65)
(56,86)(57,87)(58,88)(59,89)(60,90)(66,81)(67,82)(68,83)(69,84)(70,85);
s3 := Sym(90)!(16,41)(17,42)(18,43)(19,44)(20,45)(21,31)(22,32)(23,33)(24,34)
(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(61,86)(62,87)(63,88)(64,89)(65,90)
(66,76)(67,77)(68,78)(69,79)(70,80)(71,81)(72,82)(73,83)(74,84)(75,85);
poly := sub<Sym(90)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope