include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,4,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,10,2}*1440
if this polytope has a name.
Group : SmallGroup(1440,5890)
Rank : 5
Schlafli Type : {6,4,10,2}
Number of vertices, edges, etc : 9, 18, 30, 10, 2
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {6,4,2,2}*288
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(16,31)(17,32)(18,33)(19,34)(20,35)
(21,41)(22,42)(23,43)(24,44)(25,45)(26,36)(27,37)(28,38)(29,39)(30,40);;
s1 := ( 1,16)( 2,17)( 3,18)( 4,19)( 5,20)(11,41)(12,42)(13,43)(14,44)(15,45)
(21,36)(22,37)(23,38)(24,39)(25,40);;
s2 := ( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(16,41)(17,45)(18,44)(19,43)
(20,42)(21,31)(22,35)(23,34)(24,33)(25,32)(26,36)(27,40)(28,39)(29,38)
(30,37);;
s3 := ( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,12)(13,15)(16,17)(18,20)(21,22)(23,25)
(26,27)(28,30)(31,32)(33,35)(36,37)(38,40)(41,42)(43,45);;
s4 := (46,47);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(47)!( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(16,31)(17,32)(18,33)(19,34)
(20,35)(21,41)(22,42)(23,43)(24,44)(25,45)(26,36)(27,37)(28,38)(29,39)(30,40);
s1 := Sym(47)!( 1,16)( 2,17)( 3,18)( 4,19)( 5,20)(11,41)(12,42)(13,43)(14,44)
(15,45)(21,36)(22,37)(23,38)(24,39)(25,40);
s2 := Sym(47)!( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(16,41)(17,45)(18,44)
(19,43)(20,42)(21,31)(22,35)(23,34)(24,33)(25,32)(26,36)(27,40)(28,39)(29,38)
(30,37);
s3 := Sym(47)!( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,12)(13,15)(16,17)(18,20)(21,22)
(23,25)(26,27)(28,30)(31,32)(33,35)(36,37)(38,40)(41,42)(43,45);
s4 := Sym(47)!(46,47);
poly := sub<Sym(47)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope