Polytope of Type {2,6,4,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,4,10}*1440
if this polytope has a name.
Group : SmallGroup(1440,5890)
Rank : 5
Schlafli Type : {2,6,4,10}
Number of vertices, edges, etc : 2, 9, 18, 30, 10
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {2,6,4,2}*288
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 8,13)( 9,14)(10,15)(11,16)(12,17)(18,33)(19,34)(20,35)(21,36)(22,37)
(23,43)(24,44)(25,45)(26,46)(27,47)(28,38)(29,39)(30,40)(31,41)(32,42);;
s2 := ( 3,18)( 4,19)( 5,20)( 6,21)( 7,22)(13,43)(14,44)(15,45)(16,46)(17,47)
(23,38)(24,39)(25,40)(26,41)(27,42);;
s3 := ( 4, 7)( 5, 6)( 9,12)(10,11)(14,17)(15,16)(18,43)(19,47)(20,46)(21,45)
(22,44)(23,33)(24,37)(25,36)(26,35)(27,34)(28,38)(29,42)(30,41)(31,40)
(32,39);;
s4 := ( 3, 4)( 5, 7)( 8, 9)(10,12)(13,14)(15,17)(18,19)(20,22)(23,24)(25,27)
(28,29)(30,32)(33,34)(35,37)(38,39)(40,42)(43,44)(45,47);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(47)!(1,2);
s1 := Sym(47)!( 8,13)( 9,14)(10,15)(11,16)(12,17)(18,33)(19,34)(20,35)(21,36)
(22,37)(23,43)(24,44)(25,45)(26,46)(27,47)(28,38)(29,39)(30,40)(31,41)(32,42);
s2 := Sym(47)!( 3,18)( 4,19)( 5,20)( 6,21)( 7,22)(13,43)(14,44)(15,45)(16,46)
(17,47)(23,38)(24,39)(25,40)(26,41)(27,42);
s3 := Sym(47)!( 4, 7)( 5, 6)( 9,12)(10,11)(14,17)(15,16)(18,43)(19,47)(20,46)
(21,45)(22,44)(23,33)(24,37)(25,36)(26,35)(27,34)(28,38)(29,42)(30,41)(31,40)
(32,39);
s4 := Sym(47)!( 3, 4)( 5, 7)( 8, 9)(10,12)(13,14)(15,17)(18,19)(20,22)(23,24)
(25,27)(28,29)(30,32)(33,34)(35,37)(38,39)(40,42)(43,44)(45,47);
poly := sub<Sym(47)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope