include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,4,15}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,4,15}*1440
if this polytope has a name.
Group : SmallGroup(1440,5900)
Rank : 5
Schlafli Type : {6,2,4,15}
Number of vertices, edges, etc : 6, 6, 4, 30, 15
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,4,15}*720
3-fold quotients : {2,2,4,15}*480
5-fold quotients : {6,2,4,3}*288
10-fold quotients : {3,2,4,3}*144
15-fold quotients : {2,2,4,3}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 7,10)( 8,12)( 9,14)(11,17)(13,21)(15,16)(18,22)(19,20)(23,26)(24,25);;
s3 := ( 8, 9)(10,15)(11,13)(12,18)(14,19)(17,23)(20,22)(21,24)(25,26);;
s4 := ( 7, 8)( 9,11)(10,12)(14,17)(15,20)(16,19)(18,25)(22,24)(23,26);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(26)!(3,4)(5,6);
s1 := Sym(26)!(1,5)(2,3)(4,6);
s2 := Sym(26)!( 7,10)( 8,12)( 9,14)(11,17)(13,21)(15,16)(18,22)(19,20)(23,26)
(24,25);
s3 := Sym(26)!( 8, 9)(10,15)(11,13)(12,18)(14,19)(17,23)(20,22)(21,24)(25,26);
s4 := Sym(26)!( 7, 8)( 9,11)(10,12)(14,17)(15,20)(16,19)(18,25)(22,24)(23,26);
poly := sub<Sym(26)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope