Polytope of Type {30,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,12,2}*1440d
if this polytope has a name.
Group : SmallGroup(1440,5900)
Rank : 4
Schlafli Type : {30,12,2}
Number of vertices, edges, etc : 30, 180, 12, 2
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {30,4,2}*480c
   5-fold quotients : {6,12,2}*288d
   6-fold quotients : {15,4,2}*240
   15-fold quotients : {6,4,2}*96b
   30-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5,17)( 6,19)( 7,18)( 8,20)( 9,13)(10,15)(11,14)(12,16)(22,23)
(25,37)(26,39)(27,38)(28,40)(29,33)(30,35)(31,34)(32,36)(42,43)(45,57)(46,59)
(47,58)(48,60)(49,53)(50,55)(51,54)(52,56);;
s1 := ( 1, 5)( 2, 8)( 3, 7)( 4, 6)( 9,17)(10,20)(11,19)(12,18)(14,16)(21,45)
(22,48)(23,47)(24,46)(25,41)(26,44)(27,43)(28,42)(29,57)(30,60)(31,59)(32,58)
(33,53)(34,56)(35,55)(36,54)(37,49)(38,52)(39,51)(40,50);;
s2 := ( 1,24)( 2,23)( 3,22)( 4,21)( 5,28)( 6,27)( 7,26)( 8,25)( 9,32)(10,31)
(11,30)(12,29)(13,36)(14,35)(15,34)(16,33)(17,40)(18,39)(19,38)(20,37)(41,44)
(42,43)(45,48)(46,47)(49,52)(50,51)(53,56)(54,55)(57,60)(58,59);;
s3 := (61,62);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(62)!( 2, 3)( 5,17)( 6,19)( 7,18)( 8,20)( 9,13)(10,15)(11,14)(12,16)
(22,23)(25,37)(26,39)(27,38)(28,40)(29,33)(30,35)(31,34)(32,36)(42,43)(45,57)
(46,59)(47,58)(48,60)(49,53)(50,55)(51,54)(52,56);
s1 := Sym(62)!( 1, 5)( 2, 8)( 3, 7)( 4, 6)( 9,17)(10,20)(11,19)(12,18)(14,16)
(21,45)(22,48)(23,47)(24,46)(25,41)(26,44)(27,43)(28,42)(29,57)(30,60)(31,59)
(32,58)(33,53)(34,56)(35,55)(36,54)(37,49)(38,52)(39,51)(40,50);
s2 := Sym(62)!( 1,24)( 2,23)( 3,22)( 4,21)( 5,28)( 6,27)( 7,26)( 8,25)( 9,32)
(10,31)(11,30)(12,29)(13,36)(14,35)(15,34)(16,33)(17,40)(18,39)(19,38)(20,37)
(41,44)(42,43)(45,48)(46,47)(49,52)(50,51)(53,56)(54,55)(57,60)(58,59);
s3 := Sym(62)!(61,62);
poly := sub<Sym(62)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope