Polytope of Type {3,4,30}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,4,30}*1440
Also Known As : {{3,4},{4,30|2}}. if this polytope has another name.
Group : SmallGroup(1440,5901)
Rank : 4
Schlafli Type : {3,4,30}
Number of vertices, edges, etc : 6, 12, 120, 30
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,4,10}*480
   4-fold quotients : {3,2,30}*360
   5-fold quotients : {3,4,6}*288
   8-fold quotients : {3,2,15}*180
   12-fold quotients : {3,2,10}*120
   15-fold quotients : {3,4,2}*96
   20-fold quotients : {3,2,6}*72
   24-fold quotients : {3,2,5}*60
   30-fold quotients : {3,4,2}*48
   40-fold quotients : {3,2,3}*36
   60-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  7,  8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)( 31, 32)
( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 51, 52)( 55, 56)( 59, 60)( 61,121)
( 62,122)( 63,124)( 64,123)( 65,125)( 66,126)( 67,128)( 68,127)( 69,129)
( 70,130)( 71,132)( 72,131)( 73,133)( 74,134)( 75,136)( 76,135)( 77,137)
( 78,138)( 79,140)( 80,139)( 81,141)( 82,142)( 83,144)( 84,143)( 85,145)
( 86,146)( 87,148)( 88,147)( 89,149)( 90,150)( 91,152)( 92,151)( 93,153)
( 94,154)( 95,156)( 96,155)( 97,157)( 98,158)( 99,160)(100,159)(101,161)
(102,162)(103,164)(104,163)(105,165)(106,166)(107,168)(108,167)(109,169)
(110,170)(111,172)(112,171)(113,173)(114,174)(115,176)(116,175)(117,177)
(118,178)(119,180)(120,179)(183,184)(187,188)(191,192)(195,196)(199,200)
(203,204)(207,208)(211,212)(215,216)(219,220)(223,224)(227,228)(231,232)
(235,236)(239,240)(241,301)(242,302)(243,304)(244,303)(245,305)(246,306)
(247,308)(248,307)(249,309)(250,310)(251,312)(252,311)(253,313)(254,314)
(255,316)(256,315)(257,317)(258,318)(259,320)(260,319)(261,321)(262,322)
(263,324)(264,323)(265,325)(266,326)(267,328)(268,327)(269,329)(270,330)
(271,332)(272,331)(273,333)(274,334)(275,336)(276,335)(277,337)(278,338)
(279,340)(280,339)(281,341)(282,342)(283,344)(284,343)(285,345)(286,346)
(287,348)(288,347)(289,349)(290,350)(291,352)(292,351)(293,353)(294,354)
(295,356)(296,355)(297,357)(298,358)(299,360)(300,359);;
s1 := (  1, 61)(  2, 64)(  3, 63)(  4, 62)(  5, 65)(  6, 68)(  7, 67)(  8, 66)
(  9, 69)( 10, 72)( 11, 71)( 12, 70)( 13, 73)( 14, 76)( 15, 75)( 16, 74)
( 17, 77)( 18, 80)( 19, 79)( 20, 78)( 21, 81)( 22, 84)( 23, 83)( 24, 82)
( 25, 85)( 26, 88)( 27, 87)( 28, 86)( 29, 89)( 30, 92)( 31, 91)( 32, 90)
( 33, 93)( 34, 96)( 35, 95)( 36, 94)( 37, 97)( 38,100)( 39, 99)( 40, 98)
( 41,101)( 42,104)( 43,103)( 44,102)( 45,105)( 46,108)( 47,107)( 48,106)
( 49,109)( 50,112)( 51,111)( 52,110)( 53,113)( 54,116)( 55,115)( 56,114)
( 57,117)( 58,120)( 59,119)( 60,118)(122,124)(126,128)(130,132)(134,136)
(138,140)(142,144)(146,148)(150,152)(154,156)(158,160)(162,164)(166,168)
(170,172)(174,176)(178,180)(181,241)(182,244)(183,243)(184,242)(185,245)
(186,248)(187,247)(188,246)(189,249)(190,252)(191,251)(192,250)(193,253)
(194,256)(195,255)(196,254)(197,257)(198,260)(199,259)(200,258)(201,261)
(202,264)(203,263)(204,262)(205,265)(206,268)(207,267)(208,266)(209,269)
(210,272)(211,271)(212,270)(213,273)(214,276)(215,275)(216,274)(217,277)
(218,280)(219,279)(220,278)(221,281)(222,284)(223,283)(224,282)(225,285)
(226,288)(227,287)(228,286)(229,289)(230,292)(231,291)(232,290)(233,293)
(234,296)(235,295)(236,294)(237,297)(238,300)(239,299)(240,298)(302,304)
(306,308)(310,312)(314,316)(318,320)(322,324)(326,328)(330,332)(334,336)
(338,340)(342,344)(346,348)(350,352)(354,356)(358,360);;
s2 := (  1,  2)(  3,  4)(  5, 18)(  6, 17)(  7, 20)(  8, 19)(  9, 14)( 10, 13)
( 11, 16)( 12, 15)( 21, 42)( 22, 41)( 23, 44)( 24, 43)( 25, 58)( 26, 57)
( 27, 60)( 28, 59)( 29, 54)( 30, 53)( 31, 56)( 32, 55)( 33, 50)( 34, 49)
( 35, 52)( 36, 51)( 37, 46)( 38, 45)( 39, 48)( 40, 47)( 61, 62)( 63, 64)
( 65, 78)( 66, 77)( 67, 80)( 68, 79)( 69, 74)( 70, 73)( 71, 76)( 72, 75)
( 81,102)( 82,101)( 83,104)( 84,103)( 85,118)( 86,117)( 87,120)( 88,119)
( 89,114)( 90,113)( 91,116)( 92,115)( 93,110)( 94,109)( 95,112)( 96,111)
( 97,106)( 98,105)( 99,108)(100,107)(121,122)(123,124)(125,138)(126,137)
(127,140)(128,139)(129,134)(130,133)(131,136)(132,135)(141,162)(142,161)
(143,164)(144,163)(145,178)(146,177)(147,180)(148,179)(149,174)(150,173)
(151,176)(152,175)(153,170)(154,169)(155,172)(156,171)(157,166)(158,165)
(159,168)(160,167)(181,182)(183,184)(185,198)(186,197)(187,200)(188,199)
(189,194)(190,193)(191,196)(192,195)(201,222)(202,221)(203,224)(204,223)
(205,238)(206,237)(207,240)(208,239)(209,234)(210,233)(211,236)(212,235)
(213,230)(214,229)(215,232)(216,231)(217,226)(218,225)(219,228)(220,227)
(241,242)(243,244)(245,258)(246,257)(247,260)(248,259)(249,254)(250,253)
(251,256)(252,255)(261,282)(262,281)(263,284)(264,283)(265,298)(266,297)
(267,300)(268,299)(269,294)(270,293)(271,296)(272,295)(273,290)(274,289)
(275,292)(276,291)(277,286)(278,285)(279,288)(280,287)(301,302)(303,304)
(305,318)(306,317)(307,320)(308,319)(309,314)(310,313)(311,316)(312,315)
(321,342)(322,341)(323,344)(324,343)(325,358)(326,357)(327,360)(328,359)
(329,354)(330,353)(331,356)(332,355)(333,350)(334,349)(335,352)(336,351)
(337,346)(338,345)(339,348)(340,347);;
s3 := (  1,205)(  2,206)(  3,207)(  4,208)(  5,201)(  6,202)(  7,203)(  8,204)
(  9,217)( 10,218)( 11,219)( 12,220)( 13,213)( 14,214)( 15,215)( 16,216)
( 17,209)( 18,210)( 19,211)( 20,212)( 21,185)( 22,186)( 23,187)( 24,188)
( 25,181)( 26,182)( 27,183)( 28,184)( 29,197)( 30,198)( 31,199)( 32,200)
( 33,193)( 34,194)( 35,195)( 36,196)( 37,189)( 38,190)( 39,191)( 40,192)
( 41,225)( 42,226)( 43,227)( 44,228)( 45,221)( 46,222)( 47,223)( 48,224)
( 49,237)( 50,238)( 51,239)( 52,240)( 53,233)( 54,234)( 55,235)( 56,236)
( 57,229)( 58,230)( 59,231)( 60,232)( 61,265)( 62,266)( 63,267)( 64,268)
( 65,261)( 66,262)( 67,263)( 68,264)( 69,277)( 70,278)( 71,279)( 72,280)
( 73,273)( 74,274)( 75,275)( 76,276)( 77,269)( 78,270)( 79,271)( 80,272)
( 81,245)( 82,246)( 83,247)( 84,248)( 85,241)( 86,242)( 87,243)( 88,244)
( 89,257)( 90,258)( 91,259)( 92,260)( 93,253)( 94,254)( 95,255)( 96,256)
( 97,249)( 98,250)( 99,251)(100,252)(101,285)(102,286)(103,287)(104,288)
(105,281)(106,282)(107,283)(108,284)(109,297)(110,298)(111,299)(112,300)
(113,293)(114,294)(115,295)(116,296)(117,289)(118,290)(119,291)(120,292)
(121,325)(122,326)(123,327)(124,328)(125,321)(126,322)(127,323)(128,324)
(129,337)(130,338)(131,339)(132,340)(133,333)(134,334)(135,335)(136,336)
(137,329)(138,330)(139,331)(140,332)(141,305)(142,306)(143,307)(144,308)
(145,301)(146,302)(147,303)(148,304)(149,317)(150,318)(151,319)(152,320)
(153,313)(154,314)(155,315)(156,316)(157,309)(158,310)(159,311)(160,312)
(161,345)(162,346)(163,347)(164,348)(165,341)(166,342)(167,343)(168,344)
(169,357)(170,358)(171,359)(172,360)(173,353)(174,354)(175,355)(176,356)
(177,349)(178,350)(179,351)(180,352);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(360)!(  3,  4)(  7,  8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)
( 31, 32)( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 51, 52)( 55, 56)( 59, 60)
( 61,121)( 62,122)( 63,124)( 64,123)( 65,125)( 66,126)( 67,128)( 68,127)
( 69,129)( 70,130)( 71,132)( 72,131)( 73,133)( 74,134)( 75,136)( 76,135)
( 77,137)( 78,138)( 79,140)( 80,139)( 81,141)( 82,142)( 83,144)( 84,143)
( 85,145)( 86,146)( 87,148)( 88,147)( 89,149)( 90,150)( 91,152)( 92,151)
( 93,153)( 94,154)( 95,156)( 96,155)( 97,157)( 98,158)( 99,160)(100,159)
(101,161)(102,162)(103,164)(104,163)(105,165)(106,166)(107,168)(108,167)
(109,169)(110,170)(111,172)(112,171)(113,173)(114,174)(115,176)(116,175)
(117,177)(118,178)(119,180)(120,179)(183,184)(187,188)(191,192)(195,196)
(199,200)(203,204)(207,208)(211,212)(215,216)(219,220)(223,224)(227,228)
(231,232)(235,236)(239,240)(241,301)(242,302)(243,304)(244,303)(245,305)
(246,306)(247,308)(248,307)(249,309)(250,310)(251,312)(252,311)(253,313)
(254,314)(255,316)(256,315)(257,317)(258,318)(259,320)(260,319)(261,321)
(262,322)(263,324)(264,323)(265,325)(266,326)(267,328)(268,327)(269,329)
(270,330)(271,332)(272,331)(273,333)(274,334)(275,336)(276,335)(277,337)
(278,338)(279,340)(280,339)(281,341)(282,342)(283,344)(284,343)(285,345)
(286,346)(287,348)(288,347)(289,349)(290,350)(291,352)(292,351)(293,353)
(294,354)(295,356)(296,355)(297,357)(298,358)(299,360)(300,359);
s1 := Sym(360)!(  1, 61)(  2, 64)(  3, 63)(  4, 62)(  5, 65)(  6, 68)(  7, 67)
(  8, 66)(  9, 69)( 10, 72)( 11, 71)( 12, 70)( 13, 73)( 14, 76)( 15, 75)
( 16, 74)( 17, 77)( 18, 80)( 19, 79)( 20, 78)( 21, 81)( 22, 84)( 23, 83)
( 24, 82)( 25, 85)( 26, 88)( 27, 87)( 28, 86)( 29, 89)( 30, 92)( 31, 91)
( 32, 90)( 33, 93)( 34, 96)( 35, 95)( 36, 94)( 37, 97)( 38,100)( 39, 99)
( 40, 98)( 41,101)( 42,104)( 43,103)( 44,102)( 45,105)( 46,108)( 47,107)
( 48,106)( 49,109)( 50,112)( 51,111)( 52,110)( 53,113)( 54,116)( 55,115)
( 56,114)( 57,117)( 58,120)( 59,119)( 60,118)(122,124)(126,128)(130,132)
(134,136)(138,140)(142,144)(146,148)(150,152)(154,156)(158,160)(162,164)
(166,168)(170,172)(174,176)(178,180)(181,241)(182,244)(183,243)(184,242)
(185,245)(186,248)(187,247)(188,246)(189,249)(190,252)(191,251)(192,250)
(193,253)(194,256)(195,255)(196,254)(197,257)(198,260)(199,259)(200,258)
(201,261)(202,264)(203,263)(204,262)(205,265)(206,268)(207,267)(208,266)
(209,269)(210,272)(211,271)(212,270)(213,273)(214,276)(215,275)(216,274)
(217,277)(218,280)(219,279)(220,278)(221,281)(222,284)(223,283)(224,282)
(225,285)(226,288)(227,287)(228,286)(229,289)(230,292)(231,291)(232,290)
(233,293)(234,296)(235,295)(236,294)(237,297)(238,300)(239,299)(240,298)
(302,304)(306,308)(310,312)(314,316)(318,320)(322,324)(326,328)(330,332)
(334,336)(338,340)(342,344)(346,348)(350,352)(354,356)(358,360);
s2 := Sym(360)!(  1,  2)(  3,  4)(  5, 18)(  6, 17)(  7, 20)(  8, 19)(  9, 14)
( 10, 13)( 11, 16)( 12, 15)( 21, 42)( 22, 41)( 23, 44)( 24, 43)( 25, 58)
( 26, 57)( 27, 60)( 28, 59)( 29, 54)( 30, 53)( 31, 56)( 32, 55)( 33, 50)
( 34, 49)( 35, 52)( 36, 51)( 37, 46)( 38, 45)( 39, 48)( 40, 47)( 61, 62)
( 63, 64)( 65, 78)( 66, 77)( 67, 80)( 68, 79)( 69, 74)( 70, 73)( 71, 76)
( 72, 75)( 81,102)( 82,101)( 83,104)( 84,103)( 85,118)( 86,117)( 87,120)
( 88,119)( 89,114)( 90,113)( 91,116)( 92,115)( 93,110)( 94,109)( 95,112)
( 96,111)( 97,106)( 98,105)( 99,108)(100,107)(121,122)(123,124)(125,138)
(126,137)(127,140)(128,139)(129,134)(130,133)(131,136)(132,135)(141,162)
(142,161)(143,164)(144,163)(145,178)(146,177)(147,180)(148,179)(149,174)
(150,173)(151,176)(152,175)(153,170)(154,169)(155,172)(156,171)(157,166)
(158,165)(159,168)(160,167)(181,182)(183,184)(185,198)(186,197)(187,200)
(188,199)(189,194)(190,193)(191,196)(192,195)(201,222)(202,221)(203,224)
(204,223)(205,238)(206,237)(207,240)(208,239)(209,234)(210,233)(211,236)
(212,235)(213,230)(214,229)(215,232)(216,231)(217,226)(218,225)(219,228)
(220,227)(241,242)(243,244)(245,258)(246,257)(247,260)(248,259)(249,254)
(250,253)(251,256)(252,255)(261,282)(262,281)(263,284)(264,283)(265,298)
(266,297)(267,300)(268,299)(269,294)(270,293)(271,296)(272,295)(273,290)
(274,289)(275,292)(276,291)(277,286)(278,285)(279,288)(280,287)(301,302)
(303,304)(305,318)(306,317)(307,320)(308,319)(309,314)(310,313)(311,316)
(312,315)(321,342)(322,341)(323,344)(324,343)(325,358)(326,357)(327,360)
(328,359)(329,354)(330,353)(331,356)(332,355)(333,350)(334,349)(335,352)
(336,351)(337,346)(338,345)(339,348)(340,347);
s3 := Sym(360)!(  1,205)(  2,206)(  3,207)(  4,208)(  5,201)(  6,202)(  7,203)
(  8,204)(  9,217)( 10,218)( 11,219)( 12,220)( 13,213)( 14,214)( 15,215)
( 16,216)( 17,209)( 18,210)( 19,211)( 20,212)( 21,185)( 22,186)( 23,187)
( 24,188)( 25,181)( 26,182)( 27,183)( 28,184)( 29,197)( 30,198)( 31,199)
( 32,200)( 33,193)( 34,194)( 35,195)( 36,196)( 37,189)( 38,190)( 39,191)
( 40,192)( 41,225)( 42,226)( 43,227)( 44,228)( 45,221)( 46,222)( 47,223)
( 48,224)( 49,237)( 50,238)( 51,239)( 52,240)( 53,233)( 54,234)( 55,235)
( 56,236)( 57,229)( 58,230)( 59,231)( 60,232)( 61,265)( 62,266)( 63,267)
( 64,268)( 65,261)( 66,262)( 67,263)( 68,264)( 69,277)( 70,278)( 71,279)
( 72,280)( 73,273)( 74,274)( 75,275)( 76,276)( 77,269)( 78,270)( 79,271)
( 80,272)( 81,245)( 82,246)( 83,247)( 84,248)( 85,241)( 86,242)( 87,243)
( 88,244)( 89,257)( 90,258)( 91,259)( 92,260)( 93,253)( 94,254)( 95,255)
( 96,256)( 97,249)( 98,250)( 99,251)(100,252)(101,285)(102,286)(103,287)
(104,288)(105,281)(106,282)(107,283)(108,284)(109,297)(110,298)(111,299)
(112,300)(113,293)(114,294)(115,295)(116,296)(117,289)(118,290)(119,291)
(120,292)(121,325)(122,326)(123,327)(124,328)(125,321)(126,322)(127,323)
(128,324)(129,337)(130,338)(131,339)(132,340)(133,333)(134,334)(135,335)
(136,336)(137,329)(138,330)(139,331)(140,332)(141,305)(142,306)(143,307)
(144,308)(145,301)(146,302)(147,303)(148,304)(149,317)(150,318)(151,319)
(152,320)(153,313)(154,314)(155,315)(156,316)(157,309)(158,310)(159,311)
(160,312)(161,345)(162,346)(163,347)(164,348)(165,341)(166,342)(167,343)
(168,344)(169,357)(170,358)(171,359)(172,360)(173,353)(174,354)(175,355)
(176,356)(177,349)(178,350)(179,351)(180,352);
poly := sub<Sym(360)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope