include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {15,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,6,2}*1440e
if this polytope has a name.
Group : SmallGroup(1440,5901)
Rank : 4
Schlafli Type : {15,6,2}
Number of vertices, edges, etc : 60, 180, 24, 2
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {15,6,2}*480
4-fold quotients : {15,6,2}*360
5-fold quotients : {3,6,2}*288
12-fold quotients : {15,2,2}*120
15-fold quotients : {3,6,2}*96
20-fold quotients : {3,6,2}*72
30-fold quotients : {3,3,2}*48
36-fold quotients : {5,2,2}*40
60-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5,17)( 6,19)( 7,18)( 8,20)( 9,13)(10,15)(11,14)(12,16)(21,41)
(22,43)(23,42)(24,44)(25,57)(26,59)(27,58)(28,60)(29,53)(30,55)(31,54)(32,56)
(33,49)(34,51)(35,50)(36,52)(37,45)(38,47)(39,46)(40,48);;
s1 := ( 1,25)( 2,28)( 3,27)( 4,26)( 5,21)( 6,24)( 7,23)( 8,22)( 9,37)(10,40)
(11,39)(12,38)(13,33)(14,36)(15,35)(16,34)(17,29)(18,32)(19,31)(20,30)(41,45)
(42,48)(43,47)(44,46)(49,57)(50,60)(51,59)(52,58)(54,56);;
s2 := ( 1, 4)( 5, 8)( 9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)(37,40)
(41,44)(45,48)(49,52)(53,56)(57,60);;
s3 := (61,62);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(62)!( 2, 3)( 5,17)( 6,19)( 7,18)( 8,20)( 9,13)(10,15)(11,14)(12,16)
(21,41)(22,43)(23,42)(24,44)(25,57)(26,59)(27,58)(28,60)(29,53)(30,55)(31,54)
(32,56)(33,49)(34,51)(35,50)(36,52)(37,45)(38,47)(39,46)(40,48);
s1 := Sym(62)!( 1,25)( 2,28)( 3,27)( 4,26)( 5,21)( 6,24)( 7,23)( 8,22)( 9,37)
(10,40)(11,39)(12,38)(13,33)(14,36)(15,35)(16,34)(17,29)(18,32)(19,31)(20,30)
(41,45)(42,48)(43,47)(44,46)(49,57)(50,60)(51,59)(52,58)(54,56);
s2 := Sym(62)!( 1, 4)( 5, 8)( 9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)
(37,40)(41,44)(45,48)(49,52)(53,56)(57,60);
s3 := Sym(62)!(61,62);
poly := sub<Sym(62)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope