include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {60,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {60,6,2}*1440d
if this polytope has a name.
Group : SmallGroup(1440,5901)
Rank : 4
Schlafli Type : {60,6,2}
Number of vertices, edges, etc : 60, 180, 6, 2
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {20,6,2}*480b
5-fold quotients : {12,6,2}*288d
15-fold quotients : {4,6,2}*96b
30-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5,19)( 6,20)( 7,17)( 8,18)( 9,15)(10,16)(11,13)(12,14)
(21,43)(22,44)(23,41)(24,42)(25,59)(26,60)(27,57)(28,58)(29,55)(30,56)(31,53)
(32,54)(33,51)(34,52)(35,49)(36,50)(37,47)(38,48)(39,45)(40,46);;
s1 := ( 1,25)( 2,27)( 3,26)( 4,28)( 5,21)( 6,23)( 7,22)( 8,24)( 9,37)(10,39)
(11,38)(12,40)(13,33)(14,35)(15,34)(16,36)(17,29)(18,31)(19,30)(20,32)(41,45)
(42,47)(43,46)(44,48)(49,57)(50,59)(51,58)(52,60)(54,55);;
s2 := ( 2, 4)( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)
(42,44)(46,48)(50,52)(54,56)(58,60);;
s3 := (61,62);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(62)!( 1, 3)( 2, 4)( 5,19)( 6,20)( 7,17)( 8,18)( 9,15)(10,16)(11,13)
(12,14)(21,43)(22,44)(23,41)(24,42)(25,59)(26,60)(27,57)(28,58)(29,55)(30,56)
(31,53)(32,54)(33,51)(34,52)(35,49)(36,50)(37,47)(38,48)(39,45)(40,46);
s1 := Sym(62)!( 1,25)( 2,27)( 3,26)( 4,28)( 5,21)( 6,23)( 7,22)( 8,24)( 9,37)
(10,39)(11,38)(12,40)(13,33)(14,35)(15,34)(16,36)(17,29)(18,31)(19,30)(20,32)
(41,45)(42,47)(43,46)(44,48)(49,57)(50,59)(51,58)(52,60)(54,55);
s2 := Sym(62)!( 2, 4)( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)
(38,40)(42,44)(46,48)(50,52)(54,56)(58,60);
s3 := Sym(62)!(61,62);
poly := sub<Sym(62)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0 >;
to this polytope