include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,30,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,30,6}*1440a
if this polytope has a name.
Group : SmallGroup(1440,5924)
Rank : 5
Schlafli Type : {2,2,30,6}
Number of vertices, edges, etc : 2, 2, 30, 90, 6
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,2,10,6}*480
5-fold quotients : {2,2,6,6}*288b
9-fold quotients : {2,2,10,2}*160
10-fold quotients : {2,2,6,3}*144
15-fold quotients : {2,2,2,6}*96
18-fold quotients : {2,2,5,2}*80
30-fold quotients : {2,2,2,3}*48
45-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 9)( 7, 8)(10,15)(11,19)(12,18)(13,17)(14,16)(21,24)(22,23)(25,30)
(26,34)(27,33)(28,32)(29,31)(36,39)(37,38)(40,45)(41,49)(42,48)(43,47)
(44,46);;
s3 := ( 5,11)( 6,10)( 7,14)( 8,13)( 9,12)(15,16)(17,19)(20,41)(21,40)(22,44)
(23,43)(24,42)(25,36)(26,35)(27,39)(28,38)(29,37)(30,46)(31,45)(32,49)(33,48)
(34,47);;
s4 := ( 5,20)( 6,21)( 7,22)( 8,23)( 9,24)(10,30)(11,31)(12,32)(13,33)(14,34)
(15,25)(16,26)(17,27)(18,28)(19,29)(40,45)(41,46)(42,47)(43,48)(44,49);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s3*s2*s3*s4*s2*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(49)!(1,2);
s1 := Sym(49)!(3,4);
s2 := Sym(49)!( 6, 9)( 7, 8)(10,15)(11,19)(12,18)(13,17)(14,16)(21,24)(22,23)
(25,30)(26,34)(27,33)(28,32)(29,31)(36,39)(37,38)(40,45)(41,49)(42,48)(43,47)
(44,46);
s3 := Sym(49)!( 5,11)( 6,10)( 7,14)( 8,13)( 9,12)(15,16)(17,19)(20,41)(21,40)
(22,44)(23,43)(24,42)(25,36)(26,35)(27,39)(28,38)(29,37)(30,46)(31,45)(32,49)
(33,48)(34,47);
s4 := Sym(49)!( 5,20)( 6,21)( 7,22)( 8,23)( 9,24)(10,30)(11,31)(12,32)(13,33)
(14,34)(15,25)(16,26)(17,27)(18,28)(19,29)(40,45)(41,46)(42,47)(43,48)(44,49);
poly := sub<Sym(49)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s3*s2*s3*s4*s2*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope