Polytope of Type {10,6,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,6,6,2}*1440c
if this polytope has a name.
Group : SmallGroup(1440,5924)
Rank : 5
Schlafli Type : {10,6,6,2}
Number of vertices, edges, etc : 10, 30, 18, 6, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {10,6,2,2}*480
   5-fold quotients : {2,6,6,2}*288c
   9-fold quotients : {10,2,2,2}*160
   10-fold quotients : {2,3,6,2}*144
   15-fold quotients : {2,6,2,2}*96
   18-fold quotients : {5,2,2,2}*80
   30-fold quotients : {2,3,2,2}*48
   45-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)
(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)
(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)
(82,85)(83,84)(87,90)(88,89);;
s1 := ( 1, 2)( 3, 5)( 6,12)( 7,11)( 8,15)( 9,14)(10,13)(16,32)(17,31)(18,35)
(19,34)(20,33)(21,42)(22,41)(23,45)(24,44)(25,43)(26,37)(27,36)(28,40)(29,39)
(30,38)(46,47)(48,50)(51,57)(52,56)(53,60)(54,59)(55,58)(61,77)(62,76)(63,80)
(64,79)(65,78)(66,87)(67,86)(68,90)(69,89)(70,88)(71,82)(72,81)(73,85)(74,84)
(75,83);;
s2 := ( 1,66)( 2,67)( 3,68)( 4,69)( 5,70)( 6,61)( 7,62)( 8,63)( 9,64)(10,65)
(11,71)(12,72)(13,73)(14,74)(15,75)(16,51)(17,52)(18,53)(19,54)(20,55)(21,46)
(22,47)(23,48)(24,49)(25,50)(26,56)(27,57)(28,58)(29,59)(30,60)(31,81)(32,82)
(33,83)(34,84)(35,85)(36,76)(37,77)(38,78)(39,79)(40,80)(41,86)(42,87)(43,88)
(44,89)(45,90);;
s3 := ( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)
(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)(66,71)
(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90);;
s4 := (91,92);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(92)!( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)
(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)
(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)
(78,79)(82,85)(83,84)(87,90)(88,89);
s1 := Sym(92)!( 1, 2)( 3, 5)( 6,12)( 7,11)( 8,15)( 9,14)(10,13)(16,32)(17,31)
(18,35)(19,34)(20,33)(21,42)(22,41)(23,45)(24,44)(25,43)(26,37)(27,36)(28,40)
(29,39)(30,38)(46,47)(48,50)(51,57)(52,56)(53,60)(54,59)(55,58)(61,77)(62,76)
(63,80)(64,79)(65,78)(66,87)(67,86)(68,90)(69,89)(70,88)(71,82)(72,81)(73,85)
(74,84)(75,83);
s2 := Sym(92)!( 1,66)( 2,67)( 3,68)( 4,69)( 5,70)( 6,61)( 7,62)( 8,63)( 9,64)
(10,65)(11,71)(12,72)(13,73)(14,74)(15,75)(16,51)(17,52)(18,53)(19,54)(20,55)
(21,46)(22,47)(23,48)(24,49)(25,50)(26,56)(27,57)(28,58)(29,59)(30,60)(31,81)
(32,82)(33,83)(34,84)(35,85)(36,76)(37,77)(38,78)(39,79)(40,80)(41,86)(42,87)
(43,88)(44,89)(45,90);
s3 := Sym(92)!( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(21,26)(22,27)(23,28)(24,29)
(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)
(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90);
s4 := Sym(92)!(91,92);
poly := sub<Sym(92)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope