Polytope of Type {2,2,30,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,30,6}*1440b
if this polytope has a name.
Group : SmallGroup(1440,5949)
Rank : 5
Schlafli Type : {2,2,30,6}
Number of vertices, edges, etc : 2, 2, 30, 90, 6
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,2,10,6}*480, {2,2,30,2}*480
   5-fold quotients : {2,2,6,6}*288a
   6-fold quotients : {2,2,15,2}*240
   9-fold quotients : {2,2,10,2}*160
   15-fold quotients : {2,2,2,6}*96, {2,2,6,2}*96
   18-fold quotients : {2,2,5,2}*80
   30-fold quotients : {2,2,2,3}*48, {2,2,3,2}*48
   45-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 9)( 7, 8)(10,15)(11,19)(12,18)(13,17)(14,16)(21,24)(22,23)(25,30)
(26,34)(27,33)(28,32)(29,31)(36,39)(37,38)(40,45)(41,49)(42,48)(43,47)(44,46)
(51,54)(52,53)(55,60)(56,64)(57,63)(58,62)(59,61)(66,69)(67,68)(70,75)(71,79)
(72,78)(73,77)(74,76)(81,84)(82,83)(85,90)(86,94)(87,93)(88,92)(89,91);;
s3 := ( 5,11)( 6,10)( 7,14)( 8,13)( 9,12)(15,16)(17,19)(20,41)(21,40)(22,44)
(23,43)(24,42)(25,36)(26,35)(27,39)(28,38)(29,37)(30,46)(31,45)(32,49)(33,48)
(34,47)(50,56)(51,55)(52,59)(53,58)(54,57)(60,61)(62,64)(65,86)(66,85)(67,89)
(68,88)(69,87)(70,81)(71,80)(72,84)(73,83)(74,82)(75,91)(76,90)(77,94)(78,93)
(79,92);;
s4 := ( 5,65)( 6,66)( 7,67)( 8,68)( 9,69)(10,70)(11,71)(12,72)(13,73)(14,74)
(15,75)(16,76)(17,77)(18,78)(19,79)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)
(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,80)(36,81)
(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,92)
(48,93)(49,94);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(94)!(1,2);
s1 := Sym(94)!(3,4);
s2 := Sym(94)!( 6, 9)( 7, 8)(10,15)(11,19)(12,18)(13,17)(14,16)(21,24)(22,23)
(25,30)(26,34)(27,33)(28,32)(29,31)(36,39)(37,38)(40,45)(41,49)(42,48)(43,47)
(44,46)(51,54)(52,53)(55,60)(56,64)(57,63)(58,62)(59,61)(66,69)(67,68)(70,75)
(71,79)(72,78)(73,77)(74,76)(81,84)(82,83)(85,90)(86,94)(87,93)(88,92)(89,91);
s3 := Sym(94)!( 5,11)( 6,10)( 7,14)( 8,13)( 9,12)(15,16)(17,19)(20,41)(21,40)
(22,44)(23,43)(24,42)(25,36)(26,35)(27,39)(28,38)(29,37)(30,46)(31,45)(32,49)
(33,48)(34,47)(50,56)(51,55)(52,59)(53,58)(54,57)(60,61)(62,64)(65,86)(66,85)
(67,89)(68,88)(69,87)(70,81)(71,80)(72,84)(73,83)(74,82)(75,91)(76,90)(77,94)
(78,93)(79,92);
s4 := Sym(94)!( 5,65)( 6,66)( 7,67)( 8,68)( 9,69)(10,70)(11,71)(12,72)(13,73)
(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,50)(21,51)(22,52)(23,53)(24,54)
(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,80)
(36,81)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)
(47,92)(48,93)(49,94);
poly := sub<Sym(94)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope