include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {94,2,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {94,2,4}*1504
if this polytope has a name.
Group : SmallGroup(1504,182)
Rank : 4
Schlafli Type : {94,2,4}
Number of vertices, edges, etc : 94, 94, 4, 4
Order of s0s1s2s3 : 188
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {47,2,4}*752, {94,2,2}*752
4-fold quotients : {47,2,2}*376
47-fold quotients : {2,2,4}*32
94-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,47)( 3,46)( 4,45)( 5,44)( 6,43)( 7,42)( 8,41)( 9,40)(10,39)(11,38)
(12,37)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)
(23,26)(24,25)(49,94)(50,93)(51,92)(52,91)(53,90)(54,89)(55,88)(56,87)(57,86)
(58,85)(59,84)(60,83)(61,82)(62,81)(63,80)(64,79)(65,78)(66,77)(67,76)(68,75)
(69,74)(70,73)(71,72);;
s1 := ( 1,49)( 2,48)( 3,94)( 4,93)( 5,92)( 6,91)( 7,90)( 8,89)( 9,88)(10,87)
(11,86)(12,85)(13,84)(14,83)(15,82)(16,81)(17,80)(18,79)(19,78)(20,77)(21,76)
(22,75)(23,74)(24,73)(25,72)(26,71)(27,70)(28,69)(29,68)(30,67)(31,66)(32,65)
(33,64)(34,63)(35,62)(36,61)(37,60)(38,59)(39,58)(40,57)(41,56)(42,55)(43,54)
(44,53)(45,52)(46,51)(47,50);;
s2 := (96,97);;
s3 := (95,96)(97,98);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(98)!( 2,47)( 3,46)( 4,45)( 5,44)( 6,43)( 7,42)( 8,41)( 9,40)(10,39)
(11,38)(12,37)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)
(22,27)(23,26)(24,25)(49,94)(50,93)(51,92)(52,91)(53,90)(54,89)(55,88)(56,87)
(57,86)(58,85)(59,84)(60,83)(61,82)(62,81)(63,80)(64,79)(65,78)(66,77)(67,76)
(68,75)(69,74)(70,73)(71,72);
s1 := Sym(98)!( 1,49)( 2,48)( 3,94)( 4,93)( 5,92)( 6,91)( 7,90)( 8,89)( 9,88)
(10,87)(11,86)(12,85)(13,84)(14,83)(15,82)(16,81)(17,80)(18,79)(19,78)(20,77)
(21,76)(22,75)(23,74)(24,73)(25,72)(26,71)(27,70)(28,69)(29,68)(30,67)(31,66)
(32,65)(33,64)(34,63)(35,62)(36,61)(37,60)(38,59)(39,58)(40,57)(41,56)(42,55)
(43,54)(44,53)(45,52)(46,51)(47,50);
s2 := Sym(98)!(96,97);
s3 := Sym(98)!(95,96)(97,98);
poly := sub<Sym(98)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope