include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,94,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,94,2}*1504
if this polytope has a name.
Group : SmallGroup(1504,182)
Rank : 4
Schlafli Type : {4,94,2}
Number of vertices, edges, etc : 4, 188, 94, 2
Order of s0s1s2s3 : 188
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,94,2}*752
4-fold quotients : {2,47,2}*376
47-fold quotients : {4,2,2}*32
94-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 95,142)( 96,143)( 97,144)( 98,145)( 99,146)(100,147)(101,148)(102,149)
(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157)
(111,158)(112,159)(113,160)(114,161)(115,162)(116,163)(117,164)(118,165)
(119,166)(120,167)(121,168)(122,169)(123,170)(124,171)(125,172)(126,173)
(127,174)(128,175)(129,176)(130,177)(131,178)(132,179)(133,180)(134,181)
(135,182)(136,183)(137,184)(138,185)(139,186)(140,187)(141,188);;
s1 := ( 1, 95)( 2,141)( 3,140)( 4,139)( 5,138)( 6,137)( 7,136)( 8,135)
( 9,134)( 10,133)( 11,132)( 12,131)( 13,130)( 14,129)( 15,128)( 16,127)
( 17,126)( 18,125)( 19,124)( 20,123)( 21,122)( 22,121)( 23,120)( 24,119)
( 25,118)( 26,117)( 27,116)( 28,115)( 29,114)( 30,113)( 31,112)( 32,111)
( 33,110)( 34,109)( 35,108)( 36,107)( 37,106)( 38,105)( 39,104)( 40,103)
( 41,102)( 42,101)( 43,100)( 44, 99)( 45, 98)( 46, 97)( 47, 96)( 48,142)
( 49,188)( 50,187)( 51,186)( 52,185)( 53,184)( 54,183)( 55,182)( 56,181)
( 57,180)( 58,179)( 59,178)( 60,177)( 61,176)( 62,175)( 63,174)( 64,173)
( 65,172)( 66,171)( 67,170)( 68,169)( 69,168)( 70,167)( 71,166)( 72,165)
( 73,164)( 74,163)( 75,162)( 76,161)( 77,160)( 78,159)( 79,158)( 80,157)
( 81,156)( 82,155)( 83,154)( 84,153)( 85,152)( 86,151)( 87,150)( 88,149)
( 89,148)( 90,147)( 91,146)( 92,145)( 93,144)( 94,143);;
s2 := ( 1, 2)( 3, 47)( 4, 46)( 5, 45)( 6, 44)( 7, 43)( 8, 42)( 9, 41)
( 10, 40)( 11, 39)( 12, 38)( 13, 37)( 14, 36)( 15, 35)( 16, 34)( 17, 33)
( 18, 32)( 19, 31)( 20, 30)( 21, 29)( 22, 28)( 23, 27)( 24, 26)( 48, 49)
( 50, 94)( 51, 93)( 52, 92)( 53, 91)( 54, 90)( 55, 89)( 56, 88)( 57, 87)
( 58, 86)( 59, 85)( 60, 84)( 61, 83)( 62, 82)( 63, 81)( 64, 80)( 65, 79)
( 66, 78)( 67, 77)( 68, 76)( 69, 75)( 70, 74)( 71, 73)( 95, 96)( 97,141)
( 98,140)( 99,139)(100,138)(101,137)(102,136)(103,135)(104,134)(105,133)
(106,132)(107,131)(108,130)(109,129)(110,128)(111,127)(112,126)(113,125)
(114,124)(115,123)(116,122)(117,121)(118,120)(142,143)(144,188)(145,187)
(146,186)(147,185)(148,184)(149,183)(150,182)(151,181)(152,180)(153,179)
(154,178)(155,177)(156,176)(157,175)(158,174)(159,173)(160,172)(161,171)
(162,170)(163,169)(164,168)(165,167);;
s3 := (189,190);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(190)!( 95,142)( 96,143)( 97,144)( 98,145)( 99,146)(100,147)(101,148)
(102,149)(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)
(110,157)(111,158)(112,159)(113,160)(114,161)(115,162)(116,163)(117,164)
(118,165)(119,166)(120,167)(121,168)(122,169)(123,170)(124,171)(125,172)
(126,173)(127,174)(128,175)(129,176)(130,177)(131,178)(132,179)(133,180)
(134,181)(135,182)(136,183)(137,184)(138,185)(139,186)(140,187)(141,188);
s1 := Sym(190)!( 1, 95)( 2,141)( 3,140)( 4,139)( 5,138)( 6,137)( 7,136)
( 8,135)( 9,134)( 10,133)( 11,132)( 12,131)( 13,130)( 14,129)( 15,128)
( 16,127)( 17,126)( 18,125)( 19,124)( 20,123)( 21,122)( 22,121)( 23,120)
( 24,119)( 25,118)( 26,117)( 27,116)( 28,115)( 29,114)( 30,113)( 31,112)
( 32,111)( 33,110)( 34,109)( 35,108)( 36,107)( 37,106)( 38,105)( 39,104)
( 40,103)( 41,102)( 42,101)( 43,100)( 44, 99)( 45, 98)( 46, 97)( 47, 96)
( 48,142)( 49,188)( 50,187)( 51,186)( 52,185)( 53,184)( 54,183)( 55,182)
( 56,181)( 57,180)( 58,179)( 59,178)( 60,177)( 61,176)( 62,175)( 63,174)
( 64,173)( 65,172)( 66,171)( 67,170)( 68,169)( 69,168)( 70,167)( 71,166)
( 72,165)( 73,164)( 74,163)( 75,162)( 76,161)( 77,160)( 78,159)( 79,158)
( 80,157)( 81,156)( 82,155)( 83,154)( 84,153)( 85,152)( 86,151)( 87,150)
( 88,149)( 89,148)( 90,147)( 91,146)( 92,145)( 93,144)( 94,143);
s2 := Sym(190)!( 1, 2)( 3, 47)( 4, 46)( 5, 45)( 6, 44)( 7, 43)( 8, 42)
( 9, 41)( 10, 40)( 11, 39)( 12, 38)( 13, 37)( 14, 36)( 15, 35)( 16, 34)
( 17, 33)( 18, 32)( 19, 31)( 20, 30)( 21, 29)( 22, 28)( 23, 27)( 24, 26)
( 48, 49)( 50, 94)( 51, 93)( 52, 92)( 53, 91)( 54, 90)( 55, 89)( 56, 88)
( 57, 87)( 58, 86)( 59, 85)( 60, 84)( 61, 83)( 62, 82)( 63, 81)( 64, 80)
( 65, 79)( 66, 78)( 67, 77)( 68, 76)( 69, 75)( 70, 74)( 71, 73)( 95, 96)
( 97,141)( 98,140)( 99,139)(100,138)(101,137)(102,136)(103,135)(104,134)
(105,133)(106,132)(107,131)(108,130)(109,129)(110,128)(111,127)(112,126)
(113,125)(114,124)(115,123)(116,122)(117,121)(118,120)(142,143)(144,188)
(145,187)(146,186)(147,185)(148,184)(149,183)(150,182)(151,181)(152,180)
(153,179)(154,178)(155,177)(156,176)(157,175)(158,174)(159,173)(160,172)
(161,171)(162,170)(163,169)(164,168)(165,167);
s3 := Sym(190)!(189,190);
poly := sub<Sym(190)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope