include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {84,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {84,6}*1512b
if this polytope has a name.
Group : SmallGroup(1512,482)
Rank : 3
Schlafli Type : {84,6}
Number of vertices, edges, etc : 126, 378, 9
Order of s0s1s2 : 28
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {28,6}*504
7-fold quotients : {12,6}*216a
21-fold quotients : {4,6}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 19)( 5, 21)( 6, 20)( 7, 16)( 8, 18)( 9, 17)( 10, 13)
( 11, 15)( 12, 14)( 23, 24)( 25, 40)( 26, 42)( 27, 41)( 28, 37)( 29, 39)
( 30, 38)( 31, 34)( 32, 36)( 33, 35)( 44, 45)( 46, 61)( 47, 63)( 48, 62)
( 49, 58)( 50, 60)( 51, 59)( 52, 55)( 53, 57)( 54, 56)( 64,127)( 65,129)
( 66,128)( 67,145)( 68,147)( 69,146)( 70,142)( 71,144)( 72,143)( 73,139)
( 74,141)( 75,140)( 76,136)( 77,138)( 78,137)( 79,133)( 80,135)( 81,134)
( 82,130)( 83,132)( 84,131)( 85,148)( 86,150)( 87,149)( 88,166)( 89,168)
( 90,167)( 91,163)( 92,165)( 93,164)( 94,160)( 95,162)( 96,161)( 97,157)
( 98,159)( 99,158)(100,154)(101,156)(102,155)(103,151)(104,153)(105,152)
(106,169)(107,171)(108,170)(109,187)(110,189)(111,188)(112,184)(113,186)
(114,185)(115,181)(116,183)(117,182)(118,178)(119,180)(120,179)(121,175)
(122,177)(123,176)(124,172)(125,174)(126,173);;
s1 := ( 1, 5)( 2, 4)( 3, 6)( 7, 20)( 8, 19)( 9, 21)( 10, 17)( 11, 16)
( 12, 18)( 13, 14)( 22,131)( 23,130)( 24,132)( 25,128)( 26,127)( 27,129)
( 28,146)( 29,145)( 30,147)( 31,143)( 32,142)( 33,144)( 34,140)( 35,139)
( 36,141)( 37,137)( 38,136)( 39,138)( 40,134)( 41,133)( 42,135)( 43, 68)
( 44, 67)( 45, 69)( 46, 65)( 47, 64)( 48, 66)( 49, 83)( 50, 82)( 51, 84)
( 52, 80)( 53, 79)( 54, 81)( 55, 77)( 56, 76)( 57, 78)( 58, 74)( 59, 73)
( 60, 75)( 61, 71)( 62, 70)( 63, 72)( 85,174)( 86,173)( 87,172)( 88,171)
( 89,170)( 90,169)( 91,189)( 92,188)( 93,187)( 94,186)( 95,185)( 96,184)
( 97,183)( 98,182)( 99,181)(100,180)(101,179)(102,178)(103,177)(104,176)
(105,175)(106,109)(107,111)(108,110)(112,124)(113,126)(114,125)(115,121)
(116,123)(117,122)(119,120)(148,151)(149,153)(150,152)(154,166)(155,168)
(156,167)(157,163)(158,165)(159,164)(161,162);;
s2 := ( 1, 22)( 2, 23)( 3, 24)( 4, 25)( 5, 26)( 6, 27)( 7, 28)( 8, 29)
( 9, 30)( 10, 31)( 11, 32)( 12, 33)( 13, 34)( 14, 35)( 15, 36)( 16, 37)
( 17, 38)( 18, 39)( 19, 40)( 20, 41)( 21, 42)( 64,148)( 65,149)( 66,150)
( 67,151)( 68,152)( 69,153)( 70,154)( 71,155)( 72,156)( 73,157)( 74,158)
( 75,159)( 76,160)( 77,161)( 78,162)( 79,163)( 80,164)( 81,165)( 82,166)
( 83,167)( 84,168)( 85,127)( 86,128)( 87,129)( 88,130)( 89,131)( 90,132)
( 91,133)( 92,134)( 93,135)( 94,136)( 95,137)( 96,138)( 97,139)( 98,140)
( 99,141)(100,142)(101,143)(102,144)(103,145)(104,146)(105,147)(106,169)
(107,170)(108,171)(109,172)(110,173)(111,174)(112,175)(113,176)(114,177)
(115,178)(116,179)(117,180)(118,181)(119,182)(120,183)(121,184)(122,185)
(123,186)(124,187)(125,188)(126,189);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(189)!( 2, 3)( 4, 19)( 5, 21)( 6, 20)( 7, 16)( 8, 18)( 9, 17)
( 10, 13)( 11, 15)( 12, 14)( 23, 24)( 25, 40)( 26, 42)( 27, 41)( 28, 37)
( 29, 39)( 30, 38)( 31, 34)( 32, 36)( 33, 35)( 44, 45)( 46, 61)( 47, 63)
( 48, 62)( 49, 58)( 50, 60)( 51, 59)( 52, 55)( 53, 57)( 54, 56)( 64,127)
( 65,129)( 66,128)( 67,145)( 68,147)( 69,146)( 70,142)( 71,144)( 72,143)
( 73,139)( 74,141)( 75,140)( 76,136)( 77,138)( 78,137)( 79,133)( 80,135)
( 81,134)( 82,130)( 83,132)( 84,131)( 85,148)( 86,150)( 87,149)( 88,166)
( 89,168)( 90,167)( 91,163)( 92,165)( 93,164)( 94,160)( 95,162)( 96,161)
( 97,157)( 98,159)( 99,158)(100,154)(101,156)(102,155)(103,151)(104,153)
(105,152)(106,169)(107,171)(108,170)(109,187)(110,189)(111,188)(112,184)
(113,186)(114,185)(115,181)(116,183)(117,182)(118,178)(119,180)(120,179)
(121,175)(122,177)(123,176)(124,172)(125,174)(126,173);
s1 := Sym(189)!( 1, 5)( 2, 4)( 3, 6)( 7, 20)( 8, 19)( 9, 21)( 10, 17)
( 11, 16)( 12, 18)( 13, 14)( 22,131)( 23,130)( 24,132)( 25,128)( 26,127)
( 27,129)( 28,146)( 29,145)( 30,147)( 31,143)( 32,142)( 33,144)( 34,140)
( 35,139)( 36,141)( 37,137)( 38,136)( 39,138)( 40,134)( 41,133)( 42,135)
( 43, 68)( 44, 67)( 45, 69)( 46, 65)( 47, 64)( 48, 66)( 49, 83)( 50, 82)
( 51, 84)( 52, 80)( 53, 79)( 54, 81)( 55, 77)( 56, 76)( 57, 78)( 58, 74)
( 59, 73)( 60, 75)( 61, 71)( 62, 70)( 63, 72)( 85,174)( 86,173)( 87,172)
( 88,171)( 89,170)( 90,169)( 91,189)( 92,188)( 93,187)( 94,186)( 95,185)
( 96,184)( 97,183)( 98,182)( 99,181)(100,180)(101,179)(102,178)(103,177)
(104,176)(105,175)(106,109)(107,111)(108,110)(112,124)(113,126)(114,125)
(115,121)(116,123)(117,122)(119,120)(148,151)(149,153)(150,152)(154,166)
(155,168)(156,167)(157,163)(158,165)(159,164)(161,162);
s2 := Sym(189)!( 1, 22)( 2, 23)( 3, 24)( 4, 25)( 5, 26)( 6, 27)( 7, 28)
( 8, 29)( 9, 30)( 10, 31)( 11, 32)( 12, 33)( 13, 34)( 14, 35)( 15, 36)
( 16, 37)( 17, 38)( 18, 39)( 19, 40)( 20, 41)( 21, 42)( 64,148)( 65,149)
( 66,150)( 67,151)( 68,152)( 69,153)( 70,154)( 71,155)( 72,156)( 73,157)
( 74,158)( 75,159)( 76,160)( 77,161)( 78,162)( 79,163)( 80,164)( 81,165)
( 82,166)( 83,167)( 84,168)( 85,127)( 86,128)( 87,129)( 88,130)( 89,131)
( 90,132)( 91,133)( 92,134)( 93,135)( 94,136)( 95,137)( 96,138)( 97,139)
( 98,140)( 99,141)(100,142)(101,143)(102,144)(103,145)(104,146)(105,147)
(106,169)(107,170)(108,171)(109,172)(110,173)(111,174)(112,175)(113,176)
(114,177)(115,178)(116,179)(117,180)(118,181)(119,182)(120,183)(121,184)
(122,185)(123,186)(124,187)(125,188)(126,189);
poly := sub<Sym(189)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2 >;
References : None.
to this polytope