include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {21,6,3,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {21,6,3,2}*1512
if this polytope has a name.
Group : SmallGroup(1512,561)
Rank : 5
Schlafli Type : {21,6,3,2}
Number of vertices, edges, etc : 21, 63, 9, 3, 2
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {21,2,3,2}*504
7-fold quotients : {3,6,3,2}*216
9-fold quotients : {7,2,3,2}*168
21-fold quotients : {3,2,3,2}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4,19)( 5,21)( 6,20)( 7,16)( 8,18)( 9,17)(10,13)(11,15)(12,14)
(22,43)(23,45)(24,44)(25,61)(26,63)(27,62)(28,58)(29,60)(30,59)(31,55)(32,57)
(33,56)(34,52)(35,54)(36,53)(37,49)(38,51)(39,50)(40,46)(41,48)(42,47);;
s1 := ( 1,25)( 2,27)( 3,26)( 4,22)( 5,24)( 6,23)( 7,40)( 8,42)( 9,41)(10,37)
(11,39)(12,38)(13,34)(14,36)(15,35)(16,31)(17,33)(18,32)(19,28)(20,30)(21,29)
(43,46)(44,48)(45,47)(49,61)(50,63)(51,62)(52,58)(53,60)(54,59)(56,57);;
s2 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(22,23)(25,26)(28,29)
(31,32)(34,35)(37,38)(40,41)(43,45)(46,48)(49,51)(52,54)(55,57)(58,60)
(61,63);;
s3 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63);;
s4 := (64,65);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(65)!( 2, 3)( 4,19)( 5,21)( 6,20)( 7,16)( 8,18)( 9,17)(10,13)(11,15)
(12,14)(22,43)(23,45)(24,44)(25,61)(26,63)(27,62)(28,58)(29,60)(30,59)(31,55)
(32,57)(33,56)(34,52)(35,54)(36,53)(37,49)(38,51)(39,50)(40,46)(41,48)(42,47);
s1 := Sym(65)!( 1,25)( 2,27)( 3,26)( 4,22)( 5,24)( 6,23)( 7,40)( 8,42)( 9,41)
(10,37)(11,39)(12,38)(13,34)(14,36)(15,35)(16,31)(17,33)(18,32)(19,28)(20,30)
(21,29)(43,46)(44,48)(45,47)(49,61)(50,63)(51,62)(52,58)(53,60)(54,59)(56,57);
s2 := Sym(65)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(22,23)(25,26)
(28,29)(31,32)(34,35)(37,38)(40,41)(43,45)(46,48)(49,51)(52,54)(55,57)(58,60)
(61,63);
s3 := Sym(65)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63);
s4 := Sym(65)!(64,65);
poly := sub<Sym(65)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope