include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,42,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,42,6}*1512
if this polytope has a name.
Group : SmallGroup(1512,561)
Rank : 4
Schlafli Type : {2,42,6}
Number of vertices, edges, etc : 2, 63, 189, 9
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
7-fold quotients : {2,6,6}*216
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6,21)( 7,23)( 8,22)( 9,18)(10,20)(11,19)(12,15)(13,17)(14,16)
(24,45)(25,47)(26,46)(27,63)(28,65)(29,64)(30,60)(31,62)(32,61)(33,57)(34,59)
(35,58)(36,54)(37,56)(38,55)(39,51)(40,53)(41,52)(42,48)(43,50)(44,49);;
s2 := ( 3,27)( 4,28)( 5,29)( 6,24)( 7,25)( 8,26)( 9,42)(10,43)(11,44)(12,39)
(13,40)(14,41)(15,36)(16,37)(17,38)(18,33)(19,34)(20,35)(21,30)(22,31)(23,32)
(45,48)(46,49)(47,50)(51,63)(52,64)(53,65)(54,60)(55,61)(56,62);;
s3 := ( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(24,25)(27,28)(30,31)
(33,34)(36,37)(39,40)(42,43)(45,47)(48,50)(51,53)(54,56)(57,59)(60,62)
(63,65);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(65)!(1,2);
s1 := Sym(65)!( 4, 5)( 6,21)( 7,23)( 8,22)( 9,18)(10,20)(11,19)(12,15)(13,17)
(14,16)(24,45)(25,47)(26,46)(27,63)(28,65)(29,64)(30,60)(31,62)(32,61)(33,57)
(34,59)(35,58)(36,54)(37,56)(38,55)(39,51)(40,53)(41,52)(42,48)(43,50)(44,49);
s2 := Sym(65)!( 3,27)( 4,28)( 5,29)( 6,24)( 7,25)( 8,26)( 9,42)(10,43)(11,44)
(12,39)(13,40)(14,41)(15,36)(16,37)(17,38)(18,33)(19,34)(20,35)(21,30)(22,31)
(23,32)(45,48)(46,49)(47,50)(51,63)(52,64)(53,65)(54,60)(55,61)(56,62);
s3 := Sym(65)!( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(24,25)(27,28)
(30,31)(33,34)(36,37)(39,40)(42,43)(45,47)(48,50)(51,53)(54,56)(57,59)(60,62)
(63,65);
poly := sub<Sym(65)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope