include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,6,21,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,21,2}*1512
if this polytope has a name.
Group : SmallGroup(1512,561)
Rank : 5
Schlafli Type : {3,6,21,2}
Number of vertices, edges, etc : 3, 9, 63, 21, 2
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,2,21,2}*504
7-fold quotients : {3,6,3,2}*216
9-fold quotients : {3,2,7,2}*168
21-fold quotients : {3,2,3,2}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63);;
s1 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(22,23)(25,26)(28,29)
(31,32)(34,35)(37,38)(40,41)(43,45)(46,48)(49,51)(52,54)(55,57)(58,60)
(61,63);;
s2 := ( 1,22)( 2,24)( 3,23)( 4,40)( 5,42)( 6,41)( 7,37)( 8,39)( 9,38)(10,34)
(11,36)(12,35)(13,31)(14,33)(15,32)(16,28)(17,30)(18,29)(19,25)(20,27)(21,26)
(44,45)(46,61)(47,63)(48,62)(49,58)(50,60)(51,59)(52,55)(53,57)(54,56);;
s3 := ( 1, 4)( 2, 6)( 3, 5)( 7,19)( 8,21)( 9,20)(10,16)(11,18)(12,17)(14,15)
(22,46)(23,48)(24,47)(25,43)(26,45)(27,44)(28,61)(29,63)(30,62)(31,58)(32,60)
(33,59)(34,55)(35,57)(36,56)(37,52)(38,54)(39,53)(40,49)(41,51)(42,50);;
s4 := (64,65);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(65)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63);
s1 := Sym(65)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(22,23)(25,26)
(28,29)(31,32)(34,35)(37,38)(40,41)(43,45)(46,48)(49,51)(52,54)(55,57)(58,60)
(61,63);
s2 := Sym(65)!( 1,22)( 2,24)( 3,23)( 4,40)( 5,42)( 6,41)( 7,37)( 8,39)( 9,38)
(10,34)(11,36)(12,35)(13,31)(14,33)(15,32)(16,28)(17,30)(18,29)(19,25)(20,27)
(21,26)(44,45)(46,61)(47,63)(48,62)(49,58)(50,60)(51,59)(52,55)(53,57)(54,56);
s3 := Sym(65)!( 1, 4)( 2, 6)( 3, 5)( 7,19)( 8,21)( 9,20)(10,16)(11,18)(12,17)
(14,15)(22,46)(23,48)(24,47)(25,43)(26,45)(27,44)(28,61)(29,63)(30,62)(31,58)
(32,60)(33,59)(34,55)(35,57)(36,56)(37,52)(38,54)(39,53)(40,49)(41,51)(42,50);
s4 := Sym(65)!(64,65);
poly := sub<Sym(65)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope