Polytope of Type {4,14,14}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,14,14}*1568a
Also Known As : {{4,14|2},{14,14|2}}. if this polytope has another name.
Group : SmallGroup(1568,858)
Rank : 4
Schlafli Type : {4,14,14}
Number of vertices, edges, etc : 4, 28, 98, 14
Order of s0s1s2s3 : 28
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,14,14}*784a
   7-fold quotients : {4,2,14}*224, {4,14,2}*224
   14-fold quotients : {4,2,7}*112, {2,2,14}*112, {2,14,2}*112
   28-fold quotients : {2,2,7}*56, {2,7,2}*56
   49-fold quotients : {4,2,2}*32
   98-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 99,148)(100,149)(101,150)(102,151)(103,152)(104,153)(105,154)(106,155)
(107,156)(108,157)(109,158)(110,159)(111,160)(112,161)(113,162)(114,163)
(115,164)(116,165)(117,166)(118,167)(119,168)(120,169)(121,170)(122,171)
(123,172)(124,173)(125,174)(126,175)(127,176)(128,177)(129,178)(130,179)
(131,180)(132,181)(133,182)(134,183)(135,184)(136,185)(137,186)(138,187)
(139,188)(140,189)(141,190)(142,191)(143,192)(144,193)(145,194)(146,195)
(147,196);;
s1 := (  1, 99)(  2,100)(  3,101)(  4,102)(  5,103)(  6,104)(  7,105)(  8,141)
(  9,142)( 10,143)( 11,144)( 12,145)( 13,146)( 14,147)( 15,134)( 16,135)
( 17,136)( 18,137)( 19,138)( 20,139)( 21,140)( 22,127)( 23,128)( 24,129)
( 25,130)( 26,131)( 27,132)( 28,133)( 29,120)( 30,121)( 31,122)( 32,123)
( 33,124)( 34,125)( 35,126)( 36,113)( 37,114)( 38,115)( 39,116)( 40,117)
( 41,118)( 42,119)( 43,106)( 44,107)( 45,108)( 46,109)( 47,110)( 48,111)
( 49,112)( 50,148)( 51,149)( 52,150)( 53,151)( 54,152)( 55,153)( 56,154)
( 57,190)( 58,191)( 59,192)( 60,193)( 61,194)( 62,195)( 63,196)( 64,183)
( 65,184)( 66,185)( 67,186)( 68,187)( 69,188)( 70,189)( 71,176)( 72,177)
( 73,178)( 74,179)( 75,180)( 76,181)( 77,182)( 78,169)( 79,170)( 80,171)
( 81,172)( 82,173)( 83,174)( 84,175)( 85,162)( 86,163)( 87,164)( 88,165)
( 89,166)( 90,167)( 91,168)( 92,155)( 93,156)( 94,157)( 95,158)( 96,159)
( 97,160)( 98,161);;
s2 := (  1,  8)(  2, 14)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 15, 43)
( 16, 49)( 17, 48)( 18, 47)( 19, 46)( 20, 45)( 21, 44)( 22, 36)( 23, 42)
( 24, 41)( 25, 40)( 26, 39)( 27, 38)( 28, 37)( 30, 35)( 31, 34)( 32, 33)
( 50, 57)( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)( 64, 92)
( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)( 70, 93)( 71, 85)( 72, 91)
( 73, 90)( 74, 89)( 75, 88)( 76, 87)( 77, 86)( 79, 84)( 80, 83)( 81, 82)
( 99,106)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107)(113,141)
(114,147)(115,146)(116,145)(117,144)(118,143)(119,142)(120,134)(121,140)
(122,139)(123,138)(124,137)(125,136)(126,135)(128,133)(129,132)(130,131)
(148,155)(149,161)(150,160)(151,159)(152,158)(153,157)(154,156)(162,190)
(163,196)(164,195)(165,194)(166,193)(167,192)(168,191)(169,183)(170,189)
(171,188)(172,187)(173,186)(174,185)(175,184)(177,182)(178,181)(179,180);;
s3 := (  1,  2)(  3,  7)(  4,  6)(  8,  9)( 10, 14)( 11, 13)( 15, 16)( 17, 21)
( 18, 20)( 22, 23)( 24, 28)( 25, 27)( 29, 30)( 31, 35)( 32, 34)( 36, 37)
( 38, 42)( 39, 41)( 43, 44)( 45, 49)( 46, 48)( 50, 51)( 52, 56)( 53, 55)
( 57, 58)( 59, 63)( 60, 62)( 64, 65)( 66, 70)( 67, 69)( 71, 72)( 73, 77)
( 74, 76)( 78, 79)( 80, 84)( 81, 83)( 85, 86)( 87, 91)( 88, 90)( 92, 93)
( 94, 98)( 95, 97)( 99,100)(101,105)(102,104)(106,107)(108,112)(109,111)
(113,114)(115,119)(116,118)(120,121)(122,126)(123,125)(127,128)(129,133)
(130,132)(134,135)(136,140)(137,139)(141,142)(143,147)(144,146)(148,149)
(150,154)(151,153)(155,156)(157,161)(158,160)(162,163)(164,168)(165,167)
(169,170)(171,175)(172,174)(176,177)(178,182)(179,181)(183,184)(185,189)
(186,188)(190,191)(192,196)(193,195);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(196)!( 99,148)(100,149)(101,150)(102,151)(103,152)(104,153)(105,154)
(106,155)(107,156)(108,157)(109,158)(110,159)(111,160)(112,161)(113,162)
(114,163)(115,164)(116,165)(117,166)(118,167)(119,168)(120,169)(121,170)
(122,171)(123,172)(124,173)(125,174)(126,175)(127,176)(128,177)(129,178)
(130,179)(131,180)(132,181)(133,182)(134,183)(135,184)(136,185)(137,186)
(138,187)(139,188)(140,189)(141,190)(142,191)(143,192)(144,193)(145,194)
(146,195)(147,196);
s1 := Sym(196)!(  1, 99)(  2,100)(  3,101)(  4,102)(  5,103)(  6,104)(  7,105)
(  8,141)(  9,142)( 10,143)( 11,144)( 12,145)( 13,146)( 14,147)( 15,134)
( 16,135)( 17,136)( 18,137)( 19,138)( 20,139)( 21,140)( 22,127)( 23,128)
( 24,129)( 25,130)( 26,131)( 27,132)( 28,133)( 29,120)( 30,121)( 31,122)
( 32,123)( 33,124)( 34,125)( 35,126)( 36,113)( 37,114)( 38,115)( 39,116)
( 40,117)( 41,118)( 42,119)( 43,106)( 44,107)( 45,108)( 46,109)( 47,110)
( 48,111)( 49,112)( 50,148)( 51,149)( 52,150)( 53,151)( 54,152)( 55,153)
( 56,154)( 57,190)( 58,191)( 59,192)( 60,193)( 61,194)( 62,195)( 63,196)
( 64,183)( 65,184)( 66,185)( 67,186)( 68,187)( 69,188)( 70,189)( 71,176)
( 72,177)( 73,178)( 74,179)( 75,180)( 76,181)( 77,182)( 78,169)( 79,170)
( 80,171)( 81,172)( 82,173)( 83,174)( 84,175)( 85,162)( 86,163)( 87,164)
( 88,165)( 89,166)( 90,167)( 91,168)( 92,155)( 93,156)( 94,157)( 95,158)
( 96,159)( 97,160)( 98,161);
s2 := Sym(196)!(  1,  8)(  2, 14)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)
( 15, 43)( 16, 49)( 17, 48)( 18, 47)( 19, 46)( 20, 45)( 21, 44)( 22, 36)
( 23, 42)( 24, 41)( 25, 40)( 26, 39)( 27, 38)( 28, 37)( 30, 35)( 31, 34)
( 32, 33)( 50, 57)( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)
( 64, 92)( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)( 70, 93)( 71, 85)
( 72, 91)( 73, 90)( 74, 89)( 75, 88)( 76, 87)( 77, 86)( 79, 84)( 80, 83)
( 81, 82)( 99,106)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107)
(113,141)(114,147)(115,146)(116,145)(117,144)(118,143)(119,142)(120,134)
(121,140)(122,139)(123,138)(124,137)(125,136)(126,135)(128,133)(129,132)
(130,131)(148,155)(149,161)(150,160)(151,159)(152,158)(153,157)(154,156)
(162,190)(163,196)(164,195)(165,194)(166,193)(167,192)(168,191)(169,183)
(170,189)(171,188)(172,187)(173,186)(174,185)(175,184)(177,182)(178,181)
(179,180);
s3 := Sym(196)!(  1,  2)(  3,  7)(  4,  6)(  8,  9)( 10, 14)( 11, 13)( 15, 16)
( 17, 21)( 18, 20)( 22, 23)( 24, 28)( 25, 27)( 29, 30)( 31, 35)( 32, 34)
( 36, 37)( 38, 42)( 39, 41)( 43, 44)( 45, 49)( 46, 48)( 50, 51)( 52, 56)
( 53, 55)( 57, 58)( 59, 63)( 60, 62)( 64, 65)( 66, 70)( 67, 69)( 71, 72)
( 73, 77)( 74, 76)( 78, 79)( 80, 84)( 81, 83)( 85, 86)( 87, 91)( 88, 90)
( 92, 93)( 94, 98)( 95, 97)( 99,100)(101,105)(102,104)(106,107)(108,112)
(109,111)(113,114)(115,119)(116,118)(120,121)(122,126)(123,125)(127,128)
(129,133)(130,132)(134,135)(136,140)(137,139)(141,142)(143,147)(144,146)
(148,149)(150,154)(151,153)(155,156)(157,161)(158,160)(162,163)(164,168)
(165,167)(169,170)(171,175)(172,174)(176,177)(178,182)(179,181)(183,184)
(185,189)(186,188)(190,191)(192,196)(193,195);
poly := sub<Sym(196)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope