include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {7,14,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,14,4,2}*1568
if this polytope has a name.
Group : SmallGroup(1568,877)
Rank : 5
Schlafli Type : {7,14,4,2}
Number of vertices, edges, etc : 7, 49, 28, 4, 2
Order of s0s1s2s3s4 : 28
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,14,2,2}*784
7-fold quotients : {7,2,4,2}*224
14-fold quotients : {7,2,2,2}*112
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 8, 43)( 9, 49)( 10, 48)( 11, 47)( 12, 46)
( 13, 45)( 14, 44)( 15, 36)( 16, 42)( 17, 41)( 18, 40)( 19, 39)( 20, 38)
( 21, 37)( 22, 29)( 23, 35)( 24, 34)( 25, 33)( 26, 32)( 27, 31)( 28, 30)
( 51, 56)( 52, 55)( 53, 54)( 57, 92)( 58, 98)( 59, 97)( 60, 96)( 61, 95)
( 62, 94)( 63, 93)( 64, 85)( 65, 91)( 66, 90)( 67, 89)( 68, 88)( 69, 87)
( 70, 86)( 71, 78)( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 76, 80)( 77, 79)
(100,105)(101,104)(102,103)(106,141)(107,147)(108,146)(109,145)(110,144)
(111,143)(112,142)(113,134)(114,140)(115,139)(116,138)(117,137)(118,136)
(119,135)(120,127)(121,133)(122,132)(123,131)(124,130)(125,129)(126,128)
(149,154)(150,153)(151,152)(155,190)(156,196)(157,195)(158,194)(159,193)
(160,192)(161,191)(162,183)(163,189)(164,188)(165,187)(166,186)(167,185)
(168,184)(169,176)(170,182)(171,181)(172,180)(173,179)(174,178)(175,177);;
s1 := ( 1, 9)( 2, 8)( 3, 14)( 4, 13)( 5, 12)( 6, 11)( 7, 10)( 15, 44)
( 16, 43)( 17, 49)( 18, 48)( 19, 47)( 20, 46)( 21, 45)( 22, 37)( 23, 36)
( 24, 42)( 25, 41)( 26, 40)( 27, 39)( 28, 38)( 29, 30)( 31, 35)( 32, 34)
( 50, 58)( 51, 57)( 52, 63)( 53, 62)( 54, 61)( 55, 60)( 56, 59)( 64, 93)
( 65, 92)( 66, 98)( 67, 97)( 68, 96)( 69, 95)( 70, 94)( 71, 86)( 72, 85)
( 73, 91)( 74, 90)( 75, 89)( 76, 88)( 77, 87)( 78, 79)( 80, 84)( 81, 83)
( 99,107)(100,106)(101,112)(102,111)(103,110)(104,109)(105,108)(113,142)
(114,141)(115,147)(116,146)(117,145)(118,144)(119,143)(120,135)(121,134)
(122,140)(123,139)(124,138)(125,137)(126,136)(127,128)(129,133)(130,132)
(148,156)(149,155)(150,161)(151,160)(152,159)(153,158)(154,157)(162,191)
(163,190)(164,196)(165,195)(166,194)(167,193)(168,192)(169,184)(170,183)
(171,189)(172,188)(173,187)(174,186)(175,185)(176,177)(178,182)(179,181);;
s2 := ( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 16, 21)( 17, 20)
( 18, 19)( 23, 28)( 24, 27)( 25, 26)( 30, 35)( 31, 34)( 32, 33)( 37, 42)
( 38, 41)( 39, 40)( 44, 49)( 45, 48)( 46, 47)( 51, 56)( 52, 55)( 53, 54)
( 58, 63)( 59, 62)( 60, 61)( 65, 70)( 66, 69)( 67, 68)( 72, 77)( 73, 76)
( 74, 75)( 79, 84)( 80, 83)( 81, 82)( 86, 91)( 87, 90)( 88, 89)( 93, 98)
( 94, 97)( 95, 96)( 99,148)(100,154)(101,153)(102,152)(103,151)(104,150)
(105,149)(106,155)(107,161)(108,160)(109,159)(110,158)(111,157)(112,156)
(113,162)(114,168)(115,167)(116,166)(117,165)(118,164)(119,163)(120,169)
(121,175)(122,174)(123,173)(124,172)(125,171)(126,170)(127,176)(128,182)
(129,181)(130,180)(131,179)(132,178)(133,177)(134,183)(135,189)(136,188)
(137,187)(138,186)(139,185)(140,184)(141,190)(142,196)(143,195)(144,194)
(145,193)(146,192)(147,191);;
s3 := ( 1, 99)( 2,100)( 3,101)( 4,102)( 5,103)( 6,104)( 7,105)( 8,106)
( 9,107)( 10,108)( 11,109)( 12,110)( 13,111)( 14,112)( 15,113)( 16,114)
( 17,115)( 18,116)( 19,117)( 20,118)( 21,119)( 22,120)( 23,121)( 24,122)
( 25,123)( 26,124)( 27,125)( 28,126)( 29,127)( 30,128)( 31,129)( 32,130)
( 33,131)( 34,132)( 35,133)( 36,134)( 37,135)( 38,136)( 39,137)( 40,138)
( 41,139)( 42,140)( 43,141)( 44,142)( 45,143)( 46,144)( 47,145)( 48,146)
( 49,147)( 50,148)( 51,149)( 52,150)( 53,151)( 54,152)( 55,153)( 56,154)
( 57,155)( 58,156)( 59,157)( 60,158)( 61,159)( 62,160)( 63,161)( 64,162)
( 65,163)( 66,164)( 67,165)( 68,166)( 69,167)( 70,168)( 71,169)( 72,170)
( 73,171)( 74,172)( 75,173)( 76,174)( 77,175)( 78,176)( 79,177)( 80,178)
( 81,179)( 82,180)( 83,181)( 84,182)( 85,183)( 86,184)( 87,185)( 88,186)
( 89,187)( 90,188)( 91,189)( 92,190)( 93,191)( 94,192)( 95,193)( 96,194)
( 97,195)( 98,196);;
s4 := (197,198);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(198)!( 2, 7)( 3, 6)( 4, 5)( 8, 43)( 9, 49)( 10, 48)( 11, 47)
( 12, 46)( 13, 45)( 14, 44)( 15, 36)( 16, 42)( 17, 41)( 18, 40)( 19, 39)
( 20, 38)( 21, 37)( 22, 29)( 23, 35)( 24, 34)( 25, 33)( 26, 32)( 27, 31)
( 28, 30)( 51, 56)( 52, 55)( 53, 54)( 57, 92)( 58, 98)( 59, 97)( 60, 96)
( 61, 95)( 62, 94)( 63, 93)( 64, 85)( 65, 91)( 66, 90)( 67, 89)( 68, 88)
( 69, 87)( 70, 86)( 71, 78)( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 76, 80)
( 77, 79)(100,105)(101,104)(102,103)(106,141)(107,147)(108,146)(109,145)
(110,144)(111,143)(112,142)(113,134)(114,140)(115,139)(116,138)(117,137)
(118,136)(119,135)(120,127)(121,133)(122,132)(123,131)(124,130)(125,129)
(126,128)(149,154)(150,153)(151,152)(155,190)(156,196)(157,195)(158,194)
(159,193)(160,192)(161,191)(162,183)(163,189)(164,188)(165,187)(166,186)
(167,185)(168,184)(169,176)(170,182)(171,181)(172,180)(173,179)(174,178)
(175,177);
s1 := Sym(198)!( 1, 9)( 2, 8)( 3, 14)( 4, 13)( 5, 12)( 6, 11)( 7, 10)
( 15, 44)( 16, 43)( 17, 49)( 18, 48)( 19, 47)( 20, 46)( 21, 45)( 22, 37)
( 23, 36)( 24, 42)( 25, 41)( 26, 40)( 27, 39)( 28, 38)( 29, 30)( 31, 35)
( 32, 34)( 50, 58)( 51, 57)( 52, 63)( 53, 62)( 54, 61)( 55, 60)( 56, 59)
( 64, 93)( 65, 92)( 66, 98)( 67, 97)( 68, 96)( 69, 95)( 70, 94)( 71, 86)
( 72, 85)( 73, 91)( 74, 90)( 75, 89)( 76, 88)( 77, 87)( 78, 79)( 80, 84)
( 81, 83)( 99,107)(100,106)(101,112)(102,111)(103,110)(104,109)(105,108)
(113,142)(114,141)(115,147)(116,146)(117,145)(118,144)(119,143)(120,135)
(121,134)(122,140)(123,139)(124,138)(125,137)(126,136)(127,128)(129,133)
(130,132)(148,156)(149,155)(150,161)(151,160)(152,159)(153,158)(154,157)
(162,191)(163,190)(164,196)(165,195)(166,194)(167,193)(168,192)(169,184)
(170,183)(171,189)(172,188)(173,187)(174,186)(175,185)(176,177)(178,182)
(179,181);
s2 := Sym(198)!( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 16, 21)
( 17, 20)( 18, 19)( 23, 28)( 24, 27)( 25, 26)( 30, 35)( 31, 34)( 32, 33)
( 37, 42)( 38, 41)( 39, 40)( 44, 49)( 45, 48)( 46, 47)( 51, 56)( 52, 55)
( 53, 54)( 58, 63)( 59, 62)( 60, 61)( 65, 70)( 66, 69)( 67, 68)( 72, 77)
( 73, 76)( 74, 75)( 79, 84)( 80, 83)( 81, 82)( 86, 91)( 87, 90)( 88, 89)
( 93, 98)( 94, 97)( 95, 96)( 99,148)(100,154)(101,153)(102,152)(103,151)
(104,150)(105,149)(106,155)(107,161)(108,160)(109,159)(110,158)(111,157)
(112,156)(113,162)(114,168)(115,167)(116,166)(117,165)(118,164)(119,163)
(120,169)(121,175)(122,174)(123,173)(124,172)(125,171)(126,170)(127,176)
(128,182)(129,181)(130,180)(131,179)(132,178)(133,177)(134,183)(135,189)
(136,188)(137,187)(138,186)(139,185)(140,184)(141,190)(142,196)(143,195)
(144,194)(145,193)(146,192)(147,191);
s3 := Sym(198)!( 1, 99)( 2,100)( 3,101)( 4,102)( 5,103)( 6,104)( 7,105)
( 8,106)( 9,107)( 10,108)( 11,109)( 12,110)( 13,111)( 14,112)( 15,113)
( 16,114)( 17,115)( 18,116)( 19,117)( 20,118)( 21,119)( 22,120)( 23,121)
( 24,122)( 25,123)( 26,124)( 27,125)( 28,126)( 29,127)( 30,128)( 31,129)
( 32,130)( 33,131)( 34,132)( 35,133)( 36,134)( 37,135)( 38,136)( 39,137)
( 40,138)( 41,139)( 42,140)( 43,141)( 44,142)( 45,143)( 46,144)( 47,145)
( 48,146)( 49,147)( 50,148)( 51,149)( 52,150)( 53,151)( 54,152)( 55,153)
( 56,154)( 57,155)( 58,156)( 59,157)( 60,158)( 61,159)( 62,160)( 63,161)
( 64,162)( 65,163)( 66,164)( 67,165)( 68,166)( 69,167)( 70,168)( 71,169)
( 72,170)( 73,171)( 74,172)( 75,173)( 76,174)( 77,175)( 78,176)( 79,177)
( 80,178)( 81,179)( 82,180)( 83,181)( 84,182)( 85,183)( 86,184)( 87,185)
( 88,186)( 89,187)( 90,188)( 91,189)( 92,190)( 93,191)( 94,192)( 95,193)
( 96,194)( 97,195)( 98,196);
s4 := Sym(198)!(197,198);
poly := sub<Sym(198)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope