include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,8,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,8,2}*1568a
if this polytope has a name.
Group : SmallGroup(1568,917)
Rank : 4
Schlafli Type : {8,8,2}
Number of vertices, edges, etc : 49, 196, 49, 2
Order of s0s1s2s3 : 14
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,32)( 3,14)( 4,38)( 5,20)( 6,44)( 7,26)( 8,34)(10,40)(11,15)(12,46)
(13,28)(16,42)(18,48)(19,23)(21,29)(22,37)(24,43)(27,31)(30,45)(35,39)
(36,47);;
s1 := ( 2, 9)( 3,17)( 4,25)( 5,33)( 6,41)( 7,49)( 8,43)(11,18)(12,26)(13,34)
(14,42)(15,36)(16,44)(20,27)(21,35)(22,29)(23,37)(24,45)(31,38)(32,46)
(40,47);;
s2 := ( 1, 9)( 2,34)( 4,28)( 5,46)( 6,15)( 7,40)( 8,32)(10,26)(11,44)(12,20)
(13,38)(16,24)(17,49)(19,36)(21,30)(23,47)(25,41)(27,35)(29,45)(31,39)
(42,43);;
s3 := (50,51);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s0*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(51)!( 2,32)( 3,14)( 4,38)( 5,20)( 6,44)( 7,26)( 8,34)(10,40)(11,15)
(12,46)(13,28)(16,42)(18,48)(19,23)(21,29)(22,37)(24,43)(27,31)(30,45)(35,39)
(36,47);
s1 := Sym(51)!( 2, 9)( 3,17)( 4,25)( 5,33)( 6,41)( 7,49)( 8,43)(11,18)(12,26)
(13,34)(14,42)(15,36)(16,44)(20,27)(21,35)(22,29)(23,37)(24,45)(31,38)(32,46)
(40,47);
s2 := Sym(51)!( 1, 9)( 2,34)( 4,28)( 5,46)( 6,15)( 7,40)( 8,32)(10,26)(11,44)
(12,20)(13,38)(16,24)(17,49)(19,36)(21,30)(23,47)(25,41)(27,35)(29,45)(31,39)
(42,43);
s3 := Sym(51)!(50,51);
poly := sub<Sym(51)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s0*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s0 >;
to this polytope