include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,2,2}*1568
if this polytope has a name.
Group : SmallGroup(1568,921)
Rank : 5
Schlafli Type : {4,4,2,2}
Number of vertices, edges, etc : 49, 98, 49, 2, 2
Order of s0s1s2s3s4 : 14
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)(17,38)
(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)
(28,35);;
s1 := ( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)(13,37)
(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)
(42,48);;
s2 := ( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,16)(17,21)(18,20)(22,23)
(24,28)(25,27)(29,30)(31,35)(32,34)(36,37)(38,42)(39,41)(43,44)(45,49)
(46,48);;
s3 := (50,51);;
s4 := (52,53);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(53)!( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)
(17,38)(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)
(28,35);
s1 := Sym(53)!( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)
(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)
(42,48);
s2 := Sym(53)!( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,16)(17,21)(18,20)
(22,23)(24,28)(25,27)(29,30)(31,35)(32,34)(36,37)(38,42)(39,41)(43,44)(45,49)
(46,48);
s3 := Sym(53)!(50,51);
s4 := Sym(53)!(52,53);
poly := sub<Sym(53)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >;
to this polytope