include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {14,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,4,2}*1568
if this polytope has a name.
Group : SmallGroup(1568,921)
Rank : 4
Schlafli Type : {14,4,2}
Number of vertices, edges, etc : 98, 196, 28, 2
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {14,4,2}*784
49-fold quotients : {2,4,2}*32
98-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,50)( 2,56)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,92)( 9,98)(10,97)
(11,96)(12,95)(13,94)(14,93)(15,85)(16,91)(17,90)(18,89)(19,88)(20,87)(21,86)
(22,78)(23,84)(24,83)(25,82)(26,81)(27,80)(28,79)(29,71)(30,77)(31,76)(32,75)
(33,74)(34,73)(35,72)(36,64)(37,70)(38,69)(39,68)(40,67)(41,66)(42,65)(43,57)
(44,63)(45,62)(46,61)(47,60)(48,59)(49,58);;
s1 := ( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)(15,43)(16,44)(17,45)
(18,46)(19,47)(20,48)(21,49)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)(28,42)
(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(64,92)(65,93)(66,94)(67,95)
(68,96)(69,97)(70,98)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91);;
s2 := ( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)(13,37)
(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)(42,48)
(51,57)(52,64)(53,71)(54,78)(55,85)(56,92)(59,65)(60,72)(61,79)(62,86)(63,93)
(67,73)(68,80)(69,87)(70,94)(75,81)(76,88)(77,95)(83,89)(84,96)(91,97);;
s3 := ( 99,100);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(100)!( 1,50)( 2,56)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,92)( 9,98)
(10,97)(11,96)(12,95)(13,94)(14,93)(15,85)(16,91)(17,90)(18,89)(19,88)(20,87)
(21,86)(22,78)(23,84)(24,83)(25,82)(26,81)(27,80)(28,79)(29,71)(30,77)(31,76)
(32,75)(33,74)(34,73)(35,72)(36,64)(37,70)(38,69)(39,68)(40,67)(41,66)(42,65)
(43,57)(44,63)(45,62)(46,61)(47,60)(48,59)(49,58);
s1 := Sym(100)!( 1, 8)( 2, 9)( 3,10)( 4,11)( 5,12)( 6,13)( 7,14)(15,43)(16,44)
(17,45)(18,46)(19,47)(20,48)(21,49)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)
(28,42)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(64,92)(65,93)(66,94)
(67,95)(68,96)(69,97)(70,98)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91);
s2 := Sym(100)!( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)
(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)
(42,48)(51,57)(52,64)(53,71)(54,78)(55,85)(56,92)(59,65)(60,72)(61,79)(62,86)
(63,93)(67,73)(68,80)(69,87)(70,94)(75,81)(76,88)(77,95)(83,89)(84,96)(91,97);
s3 := Sym(100)!( 99,100);
poly := sub<Sym(100)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope