include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,14,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,14,2}*1568
if this polytope has a name.
Group : SmallGroup(1568,921)
Rank : 5
Schlafli Type : {2,4,14,2}
Number of vertices, edges, etc : 2, 14, 98, 49, 2
Order of s0s1s2s3s4 : 4
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,38)(18,39)(19,40)
(20,41)(21,42)(22,43)(23,44)(24,31)(25,32)(26,33)(27,34)(28,35)(29,36)
(30,37);;
s2 := ( 4,10)( 5,17)( 6,24)( 7,31)( 8,38)( 9,45)(12,18)(13,25)(14,32)(15,39)
(16,46)(20,26)(21,33)(22,40)(23,47)(28,34)(29,41)(30,48)(36,42)(37,49)
(44,50);;
s3 := ( 3, 4)( 5, 9)( 6, 8)(10,46)(11,45)(12,51)(13,50)(14,49)(15,48)(16,47)
(17,39)(18,38)(19,44)(20,43)(21,42)(22,41)(23,40)(24,32)(25,31)(26,37)(27,36)
(28,35)(29,34)(30,33);;
s4 := (52,53);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(53)!(1,2);
s1 := Sym(53)!(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,38)(18,39)
(19,40)(20,41)(21,42)(22,43)(23,44)(24,31)(25,32)(26,33)(27,34)(28,35)(29,36)
(30,37);
s2 := Sym(53)!( 4,10)( 5,17)( 6,24)( 7,31)( 8,38)( 9,45)(12,18)(13,25)(14,32)
(15,39)(16,46)(20,26)(21,33)(22,40)(23,47)(28,34)(29,41)(30,48)(36,42)(37,49)
(44,50);
s3 := Sym(53)!( 3, 4)( 5, 9)( 6, 8)(10,46)(11,45)(12,51)(13,50)(14,49)(15,48)
(16,47)(17,39)(18,38)(19,44)(20,43)(21,42)(22,41)(23,40)(24,32)(25,31)(26,37)
(27,36)(28,35)(29,34)(30,33);
s4 := Sym(53)!(52,53);
poly := sub<Sym(53)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2 >;
to this polytope