include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,2,44}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,44}*1584
if this polytope has a name.
Group : SmallGroup(1584,114)
Rank : 4
Schlafli Type : {9,2,44}
Number of vertices, edges, etc : 9, 9, 44, 44
Order of s0s1s2s3 : 396
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {9,2,22}*792
3-fold quotients : {3,2,44}*528
4-fold quotients : {9,2,11}*396
6-fold quotients : {3,2,22}*264
11-fold quotients : {9,2,4}*144
12-fold quotients : {3,2,11}*132
22-fold quotients : {9,2,2}*72
33-fold quotients : {3,2,4}*48
66-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (11,12)(13,14)(16,19)(17,18)(20,21)(22,23)(24,27)(25,26)(28,29)(30,31)
(32,35)(33,34)(36,37)(38,39)(40,43)(41,42)(44,45)(46,47)(48,51)(49,50)
(52,53);;
s3 := (10,16)(11,13)(12,22)(14,24)(15,18)(17,20)(19,30)(21,32)(23,26)(25,28)
(27,38)(29,40)(31,34)(33,36)(35,46)(37,48)(39,42)(41,44)(43,52)(45,49)(47,50)
(51,53);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(53)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(53)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(53)!(11,12)(13,14)(16,19)(17,18)(20,21)(22,23)(24,27)(25,26)(28,29)
(30,31)(32,35)(33,34)(36,37)(38,39)(40,43)(41,42)(44,45)(46,47)(48,51)(49,50)
(52,53);
s3 := Sym(53)!(10,16)(11,13)(12,22)(14,24)(15,18)(17,20)(19,30)(21,32)(23,26)
(25,28)(27,38)(29,40)(31,34)(33,36)(35,46)(37,48)(39,42)(41,44)(43,52)(45,49)
(47,50)(51,53);
poly := sub<Sym(53)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope