include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {11,2,9,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {11,2,9,4}*1584
if this polytope has a name.
Group : SmallGroup(1584,364)
Rank : 5
Schlafli Type : {11,2,9,4}
Number of vertices, edges, etc : 11, 11, 9, 18, 4
Order of s0s1s2s3s4 : 99
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {11,2,3,4}*528
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s2 := (12,13)(14,17)(15,16)(18,26)(19,25)(20,27)(21,23)(22,24)(28,34)(29,35)
(30,32)(31,33)(36,42)(37,43)(38,40)(39,41)(44,47)(45,46);;
s3 := (12,16)(13,14)(15,23)(17,19)(18,20)(21,32)(22,33)(24,26)(25,28)(27,29)
(30,40)(31,41)(34,36)(35,37)(38,42)(39,46)(43,44)(45,47);;
s4 := (12,26)(13,18)(14,20)(17,27)(21,31)(23,33)(28,37)(30,39)(32,41)(34,43)
(36,44)(42,47);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(47)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11);
s1 := Sym(47)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10);
s2 := Sym(47)!(12,13)(14,17)(15,16)(18,26)(19,25)(20,27)(21,23)(22,24)(28,34)
(29,35)(30,32)(31,33)(36,42)(37,43)(38,40)(39,41)(44,47)(45,46);
s3 := Sym(47)!(12,16)(13,14)(15,23)(17,19)(18,20)(21,32)(22,33)(24,26)(25,28)
(27,29)(30,40)(31,41)(34,36)(35,37)(38,42)(39,46)(43,44)(45,47);
s4 := Sym(47)!(12,26)(13,18)(14,20)(17,27)(21,31)(23,33)(28,37)(30,39)(32,41)
(34,43)(36,44)(42,47);
poly := sub<Sym(47)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4,
s4*s3*s2*s4*s3*s4*s3*s2*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope