include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,66}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,66}*1584c
if this polytope has a name.
Group : SmallGroup(1584,576)
Rank : 3
Schlafli Type : {12,66}
Number of vertices, edges, etc : 12, 396, 66
Order of s0s1s2 : 132
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,66}*792c
3-fold quotients : {4,66}*528a
4-fold quotients : {6,33}*396
6-fold quotients : {2,66}*264
9-fold quotients : {4,22}*176
11-fold quotients : {12,6}*144c
12-fold quotients : {2,33}*132
18-fold quotients : {2,22}*88
22-fold quotients : {6,6}*72b
33-fold quotients : {4,6}*48a
36-fold quotients : {2,11}*44
44-fold quotients : {6,3}*36
66-fold quotients : {2,6}*24
99-fold quotients : {4,2}*16
132-fold quotients : {2,3}*12
198-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 34, 67)( 35, 68)( 36, 69)( 37, 70)( 38, 71)( 39, 72)( 40, 73)( 41, 74)
( 42, 75)( 43, 76)( 44, 77)( 45, 78)( 46, 79)( 47, 80)( 48, 81)( 49, 82)
( 50, 83)( 51, 84)( 52, 85)( 53, 86)( 54, 87)( 55, 88)( 56, 89)( 57, 90)
( 58, 91)( 59, 92)( 60, 93)( 61, 94)( 62, 95)( 63, 96)( 64, 97)( 65, 98)
( 66, 99)(133,166)(134,167)(135,168)(136,169)(137,170)(138,171)(139,172)
(140,173)(141,174)(142,175)(143,176)(144,177)(145,178)(146,179)(147,180)
(148,181)(149,182)(150,183)(151,184)(152,185)(153,186)(154,187)(155,188)
(156,189)(157,190)(158,191)(159,192)(160,193)(161,194)(162,195)(163,196)
(164,197)(165,198)(199,298)(200,299)(201,300)(202,301)(203,302)(204,303)
(205,304)(206,305)(207,306)(208,307)(209,308)(210,309)(211,310)(212,311)
(213,312)(214,313)(215,314)(216,315)(217,316)(218,317)(219,318)(220,319)
(221,320)(222,321)(223,322)(224,323)(225,324)(226,325)(227,326)(228,327)
(229,328)(230,329)(231,330)(232,364)(233,365)(234,366)(235,367)(236,368)
(237,369)(238,370)(239,371)(240,372)(241,373)(242,374)(243,375)(244,376)
(245,377)(246,378)(247,379)(248,380)(249,381)(250,382)(251,383)(252,384)
(253,385)(254,386)(255,387)(256,388)(257,389)(258,390)(259,391)(260,392)
(261,393)(262,394)(263,395)(264,396)(265,331)(266,332)(267,333)(268,334)
(269,335)(270,336)(271,337)(272,338)(273,339)(274,340)(275,341)(276,342)
(277,343)(278,344)(279,345)(280,346)(281,347)(282,348)(283,349)(284,350)
(285,351)(286,352)(287,353)(288,354)(289,355)(290,356)(291,357)(292,358)
(293,359)(294,360)(295,361)(296,362)(297,363);;
s1 := ( 1,232)( 2,242)( 3,241)( 4,240)( 5,239)( 6,238)( 7,237)( 8,236)
( 9,235)( 10,234)( 11,233)( 12,254)( 13,264)( 14,263)( 15,262)( 16,261)
( 17,260)( 18,259)( 19,258)( 20,257)( 21,256)( 22,255)( 23,243)( 24,253)
( 25,252)( 26,251)( 27,250)( 28,249)( 29,248)( 30,247)( 31,246)( 32,245)
( 33,244)( 34,199)( 35,209)( 36,208)( 37,207)( 38,206)( 39,205)( 40,204)
( 41,203)( 42,202)( 43,201)( 44,200)( 45,221)( 46,231)( 47,230)( 48,229)
( 49,228)( 50,227)( 51,226)( 52,225)( 53,224)( 54,223)( 55,222)( 56,210)
( 57,220)( 58,219)( 59,218)( 60,217)( 61,216)( 62,215)( 63,214)( 64,213)
( 65,212)( 66,211)( 67,265)( 68,275)( 69,274)( 70,273)( 71,272)( 72,271)
( 73,270)( 74,269)( 75,268)( 76,267)( 77,266)( 78,287)( 79,297)( 80,296)
( 81,295)( 82,294)( 83,293)( 84,292)( 85,291)( 86,290)( 87,289)( 88,288)
( 89,276)( 90,286)( 91,285)( 92,284)( 93,283)( 94,282)( 95,281)( 96,280)
( 97,279)( 98,278)( 99,277)(100,331)(101,341)(102,340)(103,339)(104,338)
(105,337)(106,336)(107,335)(108,334)(109,333)(110,332)(111,353)(112,363)
(113,362)(114,361)(115,360)(116,359)(117,358)(118,357)(119,356)(120,355)
(121,354)(122,342)(123,352)(124,351)(125,350)(126,349)(127,348)(128,347)
(129,346)(130,345)(131,344)(132,343)(133,298)(134,308)(135,307)(136,306)
(137,305)(138,304)(139,303)(140,302)(141,301)(142,300)(143,299)(144,320)
(145,330)(146,329)(147,328)(148,327)(149,326)(150,325)(151,324)(152,323)
(153,322)(154,321)(155,309)(156,319)(157,318)(158,317)(159,316)(160,315)
(161,314)(162,313)(163,312)(164,311)(165,310)(166,364)(167,374)(168,373)
(169,372)(170,371)(171,370)(172,369)(173,368)(174,367)(175,366)(176,365)
(177,386)(178,396)(179,395)(180,394)(181,393)(182,392)(183,391)(184,390)
(185,389)(186,388)(187,387)(188,375)(189,385)(190,384)(191,383)(192,382)
(193,381)(194,380)(195,379)(196,378)(197,377)(198,376);;
s2 := ( 1, 13)( 2, 12)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)( 8, 17)
( 9, 16)( 10, 15)( 11, 14)( 23, 24)( 25, 33)( 26, 32)( 27, 31)( 28, 30)
( 34, 79)( 35, 78)( 36, 88)( 37, 87)( 38, 86)( 39, 85)( 40, 84)( 41, 83)
( 42, 82)( 43, 81)( 44, 80)( 45, 68)( 46, 67)( 47, 77)( 48, 76)( 49, 75)
( 50, 74)( 51, 73)( 52, 72)( 53, 71)( 54, 70)( 55, 69)( 56, 90)( 57, 89)
( 58, 99)( 59, 98)( 60, 97)( 61, 96)( 62, 95)( 63, 94)( 64, 93)( 65, 92)
( 66, 91)(100,112)(101,111)(102,121)(103,120)(104,119)(105,118)(106,117)
(107,116)(108,115)(109,114)(110,113)(122,123)(124,132)(125,131)(126,130)
(127,129)(133,178)(134,177)(135,187)(136,186)(137,185)(138,184)(139,183)
(140,182)(141,181)(142,180)(143,179)(144,167)(145,166)(146,176)(147,175)
(148,174)(149,173)(150,172)(151,171)(152,170)(153,169)(154,168)(155,189)
(156,188)(157,198)(158,197)(159,196)(160,195)(161,194)(162,193)(163,192)
(164,191)(165,190)(199,211)(200,210)(201,220)(202,219)(203,218)(204,217)
(205,216)(206,215)(207,214)(208,213)(209,212)(221,222)(223,231)(224,230)
(225,229)(226,228)(232,277)(233,276)(234,286)(235,285)(236,284)(237,283)
(238,282)(239,281)(240,280)(241,279)(242,278)(243,266)(244,265)(245,275)
(246,274)(247,273)(248,272)(249,271)(250,270)(251,269)(252,268)(253,267)
(254,288)(255,287)(256,297)(257,296)(258,295)(259,294)(260,293)(261,292)
(262,291)(263,290)(264,289)(298,310)(299,309)(300,319)(301,318)(302,317)
(303,316)(304,315)(305,314)(306,313)(307,312)(308,311)(320,321)(322,330)
(323,329)(324,328)(325,327)(331,376)(332,375)(333,385)(334,384)(335,383)
(336,382)(337,381)(338,380)(339,379)(340,378)(341,377)(342,365)(343,364)
(344,374)(345,373)(346,372)(347,371)(348,370)(349,369)(350,368)(351,367)
(352,366)(353,387)(354,386)(355,396)(356,395)(357,394)(358,393)(359,392)
(360,391)(361,390)(362,389)(363,388);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(396)!( 34, 67)( 35, 68)( 36, 69)( 37, 70)( 38, 71)( 39, 72)( 40, 73)
( 41, 74)( 42, 75)( 43, 76)( 44, 77)( 45, 78)( 46, 79)( 47, 80)( 48, 81)
( 49, 82)( 50, 83)( 51, 84)( 52, 85)( 53, 86)( 54, 87)( 55, 88)( 56, 89)
( 57, 90)( 58, 91)( 59, 92)( 60, 93)( 61, 94)( 62, 95)( 63, 96)( 64, 97)
( 65, 98)( 66, 99)(133,166)(134,167)(135,168)(136,169)(137,170)(138,171)
(139,172)(140,173)(141,174)(142,175)(143,176)(144,177)(145,178)(146,179)
(147,180)(148,181)(149,182)(150,183)(151,184)(152,185)(153,186)(154,187)
(155,188)(156,189)(157,190)(158,191)(159,192)(160,193)(161,194)(162,195)
(163,196)(164,197)(165,198)(199,298)(200,299)(201,300)(202,301)(203,302)
(204,303)(205,304)(206,305)(207,306)(208,307)(209,308)(210,309)(211,310)
(212,311)(213,312)(214,313)(215,314)(216,315)(217,316)(218,317)(219,318)
(220,319)(221,320)(222,321)(223,322)(224,323)(225,324)(226,325)(227,326)
(228,327)(229,328)(230,329)(231,330)(232,364)(233,365)(234,366)(235,367)
(236,368)(237,369)(238,370)(239,371)(240,372)(241,373)(242,374)(243,375)
(244,376)(245,377)(246,378)(247,379)(248,380)(249,381)(250,382)(251,383)
(252,384)(253,385)(254,386)(255,387)(256,388)(257,389)(258,390)(259,391)
(260,392)(261,393)(262,394)(263,395)(264,396)(265,331)(266,332)(267,333)
(268,334)(269,335)(270,336)(271,337)(272,338)(273,339)(274,340)(275,341)
(276,342)(277,343)(278,344)(279,345)(280,346)(281,347)(282,348)(283,349)
(284,350)(285,351)(286,352)(287,353)(288,354)(289,355)(290,356)(291,357)
(292,358)(293,359)(294,360)(295,361)(296,362)(297,363);
s1 := Sym(396)!( 1,232)( 2,242)( 3,241)( 4,240)( 5,239)( 6,238)( 7,237)
( 8,236)( 9,235)( 10,234)( 11,233)( 12,254)( 13,264)( 14,263)( 15,262)
( 16,261)( 17,260)( 18,259)( 19,258)( 20,257)( 21,256)( 22,255)( 23,243)
( 24,253)( 25,252)( 26,251)( 27,250)( 28,249)( 29,248)( 30,247)( 31,246)
( 32,245)( 33,244)( 34,199)( 35,209)( 36,208)( 37,207)( 38,206)( 39,205)
( 40,204)( 41,203)( 42,202)( 43,201)( 44,200)( 45,221)( 46,231)( 47,230)
( 48,229)( 49,228)( 50,227)( 51,226)( 52,225)( 53,224)( 54,223)( 55,222)
( 56,210)( 57,220)( 58,219)( 59,218)( 60,217)( 61,216)( 62,215)( 63,214)
( 64,213)( 65,212)( 66,211)( 67,265)( 68,275)( 69,274)( 70,273)( 71,272)
( 72,271)( 73,270)( 74,269)( 75,268)( 76,267)( 77,266)( 78,287)( 79,297)
( 80,296)( 81,295)( 82,294)( 83,293)( 84,292)( 85,291)( 86,290)( 87,289)
( 88,288)( 89,276)( 90,286)( 91,285)( 92,284)( 93,283)( 94,282)( 95,281)
( 96,280)( 97,279)( 98,278)( 99,277)(100,331)(101,341)(102,340)(103,339)
(104,338)(105,337)(106,336)(107,335)(108,334)(109,333)(110,332)(111,353)
(112,363)(113,362)(114,361)(115,360)(116,359)(117,358)(118,357)(119,356)
(120,355)(121,354)(122,342)(123,352)(124,351)(125,350)(126,349)(127,348)
(128,347)(129,346)(130,345)(131,344)(132,343)(133,298)(134,308)(135,307)
(136,306)(137,305)(138,304)(139,303)(140,302)(141,301)(142,300)(143,299)
(144,320)(145,330)(146,329)(147,328)(148,327)(149,326)(150,325)(151,324)
(152,323)(153,322)(154,321)(155,309)(156,319)(157,318)(158,317)(159,316)
(160,315)(161,314)(162,313)(163,312)(164,311)(165,310)(166,364)(167,374)
(168,373)(169,372)(170,371)(171,370)(172,369)(173,368)(174,367)(175,366)
(176,365)(177,386)(178,396)(179,395)(180,394)(181,393)(182,392)(183,391)
(184,390)(185,389)(186,388)(187,387)(188,375)(189,385)(190,384)(191,383)
(192,382)(193,381)(194,380)(195,379)(196,378)(197,377)(198,376);
s2 := Sym(396)!( 1, 13)( 2, 12)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)
( 8, 17)( 9, 16)( 10, 15)( 11, 14)( 23, 24)( 25, 33)( 26, 32)( 27, 31)
( 28, 30)( 34, 79)( 35, 78)( 36, 88)( 37, 87)( 38, 86)( 39, 85)( 40, 84)
( 41, 83)( 42, 82)( 43, 81)( 44, 80)( 45, 68)( 46, 67)( 47, 77)( 48, 76)
( 49, 75)( 50, 74)( 51, 73)( 52, 72)( 53, 71)( 54, 70)( 55, 69)( 56, 90)
( 57, 89)( 58, 99)( 59, 98)( 60, 97)( 61, 96)( 62, 95)( 63, 94)( 64, 93)
( 65, 92)( 66, 91)(100,112)(101,111)(102,121)(103,120)(104,119)(105,118)
(106,117)(107,116)(108,115)(109,114)(110,113)(122,123)(124,132)(125,131)
(126,130)(127,129)(133,178)(134,177)(135,187)(136,186)(137,185)(138,184)
(139,183)(140,182)(141,181)(142,180)(143,179)(144,167)(145,166)(146,176)
(147,175)(148,174)(149,173)(150,172)(151,171)(152,170)(153,169)(154,168)
(155,189)(156,188)(157,198)(158,197)(159,196)(160,195)(161,194)(162,193)
(163,192)(164,191)(165,190)(199,211)(200,210)(201,220)(202,219)(203,218)
(204,217)(205,216)(206,215)(207,214)(208,213)(209,212)(221,222)(223,231)
(224,230)(225,229)(226,228)(232,277)(233,276)(234,286)(235,285)(236,284)
(237,283)(238,282)(239,281)(240,280)(241,279)(242,278)(243,266)(244,265)
(245,275)(246,274)(247,273)(248,272)(249,271)(250,270)(251,269)(252,268)
(253,267)(254,288)(255,287)(256,297)(257,296)(258,295)(259,294)(260,293)
(261,292)(262,291)(263,290)(264,289)(298,310)(299,309)(300,319)(301,318)
(302,317)(303,316)(304,315)(305,314)(306,313)(307,312)(308,311)(320,321)
(322,330)(323,329)(324,328)(325,327)(331,376)(332,375)(333,385)(334,384)
(335,383)(336,382)(337,381)(338,380)(339,379)(340,378)(341,377)(342,365)
(343,364)(344,374)(345,373)(346,372)(347,371)(348,370)(349,369)(350,368)
(351,367)(352,366)(353,387)(354,386)(355,396)(356,395)(357,394)(358,393)
(359,392)(360,391)(361,390)(362,389)(363,388);
poly := sub<Sym(396)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope