include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {44,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {44,4}*1584
if this polytope has a name.
Group : SmallGroup(1584,657)
Rank : 3
Schlafli Type : {44,4}
Number of vertices, edges, etc : 198, 396, 18
Order of s0s1s2 : 66
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
11-fold quotients : {4,4}*144
18-fold quotients : {22,2}*88
22-fold quotients : {4,4}*72
36-fold quotients : {11,2}*44
198-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(12,34)(13,44)(14,43)(15,42)(16,41)
(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,67)(24,77)(25,76)(26,75)(27,74)
(28,73)(29,72)(30,71)(31,70)(32,69)(33,68)(46,55)(47,54)(48,53)(49,52)(50,51)
(56,78)(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79)
(90,99)(91,98)(92,97)(93,96)(94,95);;
s1 := ( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)(17,19)
(23,24)(25,33)(26,32)(27,31)(28,30)(34,68)(35,67)(36,77)(37,76)(38,75)(39,74)
(40,73)(41,72)(42,71)(43,70)(44,69)(45,79)(46,78)(47,88)(48,87)(49,86)(50,85)
(51,84)(52,83)(53,82)(54,81)(55,80)(56,90)(57,89)(58,99)(59,98)(60,97)(61,96)
(62,95)(63,94)(64,93)(65,92)(66,91);;
s2 := ( 1,45)( 2,46)( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)(10,54)
(11,55)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)
(33,88)(56,67)(57,68)(58,69)(59,70)(60,71)(61,72)(62,73)(63,74)(64,75)(65,76)
(66,77);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(99)!( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(12,34)(13,44)(14,43)(15,42)
(16,41)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,67)(24,77)(25,76)(26,75)
(27,74)(28,73)(29,72)(30,71)(31,70)(32,69)(33,68)(46,55)(47,54)(48,53)(49,52)
(50,51)(56,78)(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)
(66,79)(90,99)(91,98)(92,97)(93,96)(94,95);
s1 := Sym(99)!( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)
(17,19)(23,24)(25,33)(26,32)(27,31)(28,30)(34,68)(35,67)(36,77)(37,76)(38,75)
(39,74)(40,73)(41,72)(42,71)(43,70)(44,69)(45,79)(46,78)(47,88)(48,87)(49,86)
(50,85)(51,84)(52,83)(53,82)(54,81)(55,80)(56,90)(57,89)(58,99)(59,98)(60,97)
(61,96)(62,95)(63,94)(64,93)(65,92)(66,91);
s2 := Sym(99)!( 1,45)( 2,46)( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)
(10,54)(11,55)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)
(32,87)(33,88)(56,67)(57,68)(58,69)(59,70)(60,71)(61,72)(62,73)(63,74)(64,75)
(65,76)(66,77);
poly := sub<Sym(99)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0 >;
References : None.
to this polytope