include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,33,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,33,4}*1584
if this polytope has a name.
Group : SmallGroup(1584,662)
Rank : 5
Schlafli Type : {3,2,33,4}
Number of vertices, edges, etc : 3, 3, 33, 66, 4
Order of s0s1s2s3s4 : 33
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
11-fold quotients : {3,2,3,4}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 6, 7)( 8,44)( 9,45)(10,47)(11,46)(12,40)(13,41)(14,43)(15,42)(16,36)
(17,37)(18,39)(19,38)(20,32)(21,33)(22,35)(23,34)(24,28)(25,29)(26,31)
(27,30);;
s3 := ( 4, 8)( 5,10)( 6, 9)( 7,11)(12,44)(13,46)(14,45)(15,47)(16,40)(17,42)
(18,41)(19,43)(20,36)(21,38)(22,37)(23,39)(24,32)(25,34)(26,33)(27,35)
(29,30);;
s4 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)(44,45)
(46,47);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4,
s4*s3*s2*s4*s3*s4*s3*s2*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(47)!(2,3);
s1 := Sym(47)!(1,2);
s2 := Sym(47)!( 6, 7)( 8,44)( 9,45)(10,47)(11,46)(12,40)(13,41)(14,43)(15,42)
(16,36)(17,37)(18,39)(19,38)(20,32)(21,33)(22,35)(23,34)(24,28)(25,29)(26,31)
(27,30);
s3 := Sym(47)!( 4, 8)( 5,10)( 6, 9)( 7,11)(12,44)(13,46)(14,45)(15,47)(16,40)
(17,42)(18,41)(19,43)(20,36)(21,38)(22,37)(23,39)(24,32)(25,34)(26,33)(27,35)
(29,30);
s4 := Sym(47)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)
(44,45)(46,47);
poly := sub<Sym(47)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope