include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {33,4,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {33,4,2,3}*1584
if this polytope has a name.
Group : SmallGroup(1584,662)
Rank : 5
Schlafli Type : {33,4,2,3}
Number of vertices, edges, etc : 33, 66, 4, 3, 3
Order of s0s1s2s3s4 : 33
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
11-fold quotients : {3,4,2,3}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5,41)( 6,42)( 7,44)( 8,43)( 9,37)(10,38)(11,40)(12,39)(13,33)
(14,34)(15,36)(16,35)(17,29)(18,30)(19,32)(20,31)(21,25)(22,26)(23,28)
(24,27);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,41)(10,43)(11,42)(12,44)(13,37)(14,39)
(15,38)(16,40)(17,33)(18,35)(19,34)(20,36)(21,29)(22,31)(23,30)(24,32)
(26,27);;
s2 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)
(43,44);;
s3 := (46,47);;
s4 := (45,46);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(47)!( 3, 4)( 5,41)( 6,42)( 7,44)( 8,43)( 9,37)(10,38)(11,40)(12,39)
(13,33)(14,34)(15,36)(16,35)(17,29)(18,30)(19,32)(20,31)(21,25)(22,26)(23,28)
(24,27);
s1 := Sym(47)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,41)(10,43)(11,42)(12,44)(13,37)
(14,39)(15,38)(16,40)(17,33)(18,35)(19,34)(20,36)(21,29)(22,31)(23,30)(24,32)
(26,27);
s2 := Sym(47)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)
(41,42)(43,44);
s3 := Sym(47)!(46,47);
s4 := Sym(47)!(45,46);
poly := sub<Sym(47)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope