Polytope of Type {2,3,6,22}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,6,22}*1584
if this polytope has a name.
Group : SmallGroup(1584,675)
Rank : 5
Schlafli Type : {2,3,6,22}
Number of vertices, edges, etc : 2, 3, 9, 66, 22
Order of s0s1s2s3s4 : 66
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,3,2,22}*528
   6-fold quotients : {2,3,2,11}*264
   11-fold quotients : {2,3,6,2}*144
   33-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 14, 25)( 15, 26)( 16, 27)( 17, 28)( 18, 29)( 19, 30)( 20, 31)( 21, 32)
( 22, 33)( 23, 34)( 24, 35)( 36, 69)( 37, 70)( 38, 71)( 39, 72)( 40, 73)
( 41, 74)( 42, 75)( 43, 76)( 44, 77)( 45, 78)( 46, 79)( 47, 91)( 48, 92)
( 49, 93)( 50, 94)( 51, 95)( 52, 96)( 53, 97)( 54, 98)( 55, 99)( 56,100)
( 57,101)( 58, 80)( 59, 81)( 60, 82)( 61, 83)( 62, 84)( 63, 85)( 64, 86)
( 65, 87)( 66, 88)( 67, 89)( 68, 90);;
s2 := ( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)(10,54)(11,55)(12,56)
(13,57)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)
(24,46)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)
(35,68)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)
(79,90);;
s3 := (  4, 13)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 14, 25)( 15, 35)( 16, 34)
( 17, 33)( 18, 32)( 19, 31)( 20, 30)( 21, 29)( 22, 28)( 23, 27)( 24, 26)
( 37, 46)( 38, 45)( 39, 44)( 40, 43)( 41, 42)( 47, 58)( 48, 68)( 49, 67)
( 50, 66)( 51, 65)( 52, 64)( 53, 63)( 54, 62)( 55, 61)( 56, 60)( 57, 59)
( 70, 79)( 71, 78)( 72, 77)( 73, 76)( 74, 75)( 80, 91)( 81,101)( 82,100)
( 83, 99)( 84, 98)( 85, 97)( 86, 96)( 87, 95)( 88, 94)( 89, 93)( 90, 92);;
s4 := (  3,  4)(  5, 13)(  6, 12)(  7, 11)(  8, 10)( 14, 15)( 16, 24)( 17, 23)
( 18, 22)( 19, 21)( 25, 26)( 27, 35)( 28, 34)( 29, 33)( 30, 32)( 36, 37)
( 38, 46)( 39, 45)( 40, 44)( 41, 43)( 47, 48)( 49, 57)( 50, 56)( 51, 55)
( 52, 54)( 58, 59)( 60, 68)( 61, 67)( 62, 66)( 63, 65)( 69, 70)( 71, 79)
( 72, 78)( 73, 77)( 74, 76)( 80, 81)( 82, 90)( 83, 89)( 84, 88)( 85, 87)
( 91, 92)( 93,101)( 94,100)( 95, 99)( 96, 98);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(101)!(1,2);
s1 := Sym(101)!( 14, 25)( 15, 26)( 16, 27)( 17, 28)( 18, 29)( 19, 30)( 20, 31)
( 21, 32)( 22, 33)( 23, 34)( 24, 35)( 36, 69)( 37, 70)( 38, 71)( 39, 72)
( 40, 73)( 41, 74)( 42, 75)( 43, 76)( 44, 77)( 45, 78)( 46, 79)( 47, 91)
( 48, 92)( 49, 93)( 50, 94)( 51, 95)( 52, 96)( 53, 97)( 54, 98)( 55, 99)
( 56,100)( 57,101)( 58, 80)( 59, 81)( 60, 82)( 61, 83)( 62, 84)( 63, 85)
( 64, 86)( 65, 87)( 66, 88)( 67, 89)( 68, 90);
s2 := Sym(101)!( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)(10,54)(11,55)
(12,56)(13,57)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)
(23,45)(24,46)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)
(34,67)(35,68)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)
(78,89)(79,90);
s3 := Sym(101)!(  4, 13)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 14, 25)( 15, 35)
( 16, 34)( 17, 33)( 18, 32)( 19, 31)( 20, 30)( 21, 29)( 22, 28)( 23, 27)
( 24, 26)( 37, 46)( 38, 45)( 39, 44)( 40, 43)( 41, 42)( 47, 58)( 48, 68)
( 49, 67)( 50, 66)( 51, 65)( 52, 64)( 53, 63)( 54, 62)( 55, 61)( 56, 60)
( 57, 59)( 70, 79)( 71, 78)( 72, 77)( 73, 76)( 74, 75)( 80, 91)( 81,101)
( 82,100)( 83, 99)( 84, 98)( 85, 97)( 86, 96)( 87, 95)( 88, 94)( 89, 93)
( 90, 92);
s4 := Sym(101)!(  3,  4)(  5, 13)(  6, 12)(  7, 11)(  8, 10)( 14, 15)( 16, 24)
( 17, 23)( 18, 22)( 19, 21)( 25, 26)( 27, 35)( 28, 34)( 29, 33)( 30, 32)
( 36, 37)( 38, 46)( 39, 45)( 40, 44)( 41, 43)( 47, 48)( 49, 57)( 50, 56)
( 51, 55)( 52, 54)( 58, 59)( 60, 68)( 61, 67)( 62, 66)( 63, 65)( 69, 70)
( 71, 79)( 72, 78)( 73, 77)( 74, 76)( 80, 81)( 82, 90)( 83, 89)( 84, 88)
( 85, 87)( 91, 92)( 93,101)( 94,100)( 95, 99)( 96, 98);
poly := sub<Sym(101)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope