include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,4}*1600b
Also Known As : 2T4(5,5)(2,0), {{4,4}10,{4,4|2}}. if this polytope has another name.
Group : SmallGroup(1600,10031)
Rank : 4
Schlafli Type : {4,4,4}
Number of vertices, edges, etc : 50, 100, 100, 4
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Locally Toroidal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4,2}*800
4-fold quotients : {4,4,2}*400
50-fold quotients : {2,2,4}*32
100-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,12)( 3,23)( 4, 9)( 5,20)( 6,21)( 8,18)(10,15)(11,16)(14,24)(17,22)
(27,37)(28,48)(29,34)(30,45)(31,46)(33,43)(35,40)(36,41)(39,49)(42,47)(52,62)
(53,73)(54,59)(55,70)(56,71)(58,68)(60,65)(61,66)(64,74)(67,72)(77,87)(78,98)
(79,84)(80,95)(81,96)(83,93)(85,90)(86,91)(89,99)(92,97);;
s1 := ( 2, 9)( 3, 12)( 4, 20)( 5, 23)( 6, 13)( 7, 16)( 8, 24)( 11, 25)
( 15, 17)( 19, 21)( 27, 34)( 28, 37)( 29, 45)( 30, 48)( 31, 38)( 32, 41)
( 33, 49)( 36, 50)( 40, 42)( 44, 46)( 52, 59)( 53, 62)( 54, 70)( 55, 73)
( 56, 63)( 57, 66)( 58, 74)( 61, 75)( 65, 67)( 69, 71)( 77, 84)( 78, 87)
( 79, 95)( 80, 98)( 81, 88)( 82, 91)( 83, 99)( 86,100)( 90, 92)( 94, 96);;
s2 := ( 1, 7)( 2, 21)( 3, 15)( 5, 18)( 6, 12)( 8, 20)( 10, 23)( 11, 17)
( 13, 25)( 16, 22)( 26, 32)( 27, 46)( 28, 40)( 30, 43)( 31, 37)( 33, 45)
( 35, 48)( 36, 42)( 38, 50)( 41, 47)( 51, 82)( 52, 96)( 53, 90)( 54, 79)
( 55, 93)( 56, 87)( 57, 76)( 58, 95)( 59, 84)( 60, 98)( 61, 92)( 62, 81)
( 63,100)( 64, 89)( 65, 78)( 66, 97)( 67, 86)( 68, 80)( 69, 94)( 70, 83)
( 71, 77)( 72, 91)( 73, 85)( 74, 99)( 75, 88);;
s3 := ( 1, 51)( 2, 52)( 3, 53)( 4, 54)( 5, 55)( 6, 56)( 7, 57)( 8, 58)
( 9, 59)( 10, 60)( 11, 61)( 12, 62)( 13, 63)( 14, 64)( 15, 65)( 16, 66)
( 17, 67)( 18, 68)( 19, 69)( 20, 70)( 21, 71)( 22, 72)( 23, 73)( 24, 74)
( 25, 75)( 26, 76)( 27, 77)( 28, 78)( 29, 79)( 30, 80)( 31, 81)( 32, 82)
( 33, 83)( 34, 84)( 35, 85)( 36, 86)( 37, 87)( 38, 88)( 39, 89)( 40, 90)
( 41, 91)( 42, 92)( 43, 93)( 44, 94)( 45, 95)( 46, 96)( 47, 97)( 48, 98)
( 49, 99)( 50,100);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(100)!( 2,12)( 3,23)( 4, 9)( 5,20)( 6,21)( 8,18)(10,15)(11,16)(14,24)
(17,22)(27,37)(28,48)(29,34)(30,45)(31,46)(33,43)(35,40)(36,41)(39,49)(42,47)
(52,62)(53,73)(54,59)(55,70)(56,71)(58,68)(60,65)(61,66)(64,74)(67,72)(77,87)
(78,98)(79,84)(80,95)(81,96)(83,93)(85,90)(86,91)(89,99)(92,97);
s1 := Sym(100)!( 2, 9)( 3, 12)( 4, 20)( 5, 23)( 6, 13)( 7, 16)( 8, 24)
( 11, 25)( 15, 17)( 19, 21)( 27, 34)( 28, 37)( 29, 45)( 30, 48)( 31, 38)
( 32, 41)( 33, 49)( 36, 50)( 40, 42)( 44, 46)( 52, 59)( 53, 62)( 54, 70)
( 55, 73)( 56, 63)( 57, 66)( 58, 74)( 61, 75)( 65, 67)( 69, 71)( 77, 84)
( 78, 87)( 79, 95)( 80, 98)( 81, 88)( 82, 91)( 83, 99)( 86,100)( 90, 92)
( 94, 96);
s2 := Sym(100)!( 1, 7)( 2, 21)( 3, 15)( 5, 18)( 6, 12)( 8, 20)( 10, 23)
( 11, 17)( 13, 25)( 16, 22)( 26, 32)( 27, 46)( 28, 40)( 30, 43)( 31, 37)
( 33, 45)( 35, 48)( 36, 42)( 38, 50)( 41, 47)( 51, 82)( 52, 96)( 53, 90)
( 54, 79)( 55, 93)( 56, 87)( 57, 76)( 58, 95)( 59, 84)( 60, 98)( 61, 92)
( 62, 81)( 63,100)( 64, 89)( 65, 78)( 66, 97)( 67, 86)( 68, 80)( 69, 94)
( 70, 83)( 71, 77)( 72, 91)( 73, 85)( 74, 99)( 75, 88);
s3 := Sym(100)!( 1, 51)( 2, 52)( 3, 53)( 4, 54)( 5, 55)( 6, 56)( 7, 57)
( 8, 58)( 9, 59)( 10, 60)( 11, 61)( 12, 62)( 13, 63)( 14, 64)( 15, 65)
( 16, 66)( 17, 67)( 18, 68)( 19, 69)( 20, 70)( 21, 71)( 22, 72)( 23, 73)
( 24, 74)( 25, 75)( 26, 76)( 27, 77)( 28, 78)( 29, 79)( 30, 80)( 31, 81)
( 32, 82)( 33, 83)( 34, 84)( 35, 85)( 36, 86)( 37, 87)( 38, 88)( 39, 89)
( 40, 90)( 41, 91)( 42, 92)( 43, 93)( 44, 94)( 45, 95)( 46, 96)( 47, 97)
( 48, 98)( 49, 99)( 50,100);
poly := sub<Sym(100)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >;
References : - Theorem 10C2, McMullen P., Schulte, E.; Abstract Regular Polytopes (Cambr\
idge University Press, 2002)
to this polytope