include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,4}*1600
if this polytope has a name.
Group : SmallGroup(1600,10050)
Rank : 4
Schlafli Type : {2,4,4}
Number of vertices, edges, etc : 2, 100, 200, 100
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,4}*800
4-fold quotients : {2,4,4}*400
25-fold quotients : {2,4,4}*64
50-fold quotients : {2,2,4}*32, {2,4,2}*32
100-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 9)( 5, 15)( 6, 21)( 7, 27)( 8, 23)( 11, 16)( 12, 22)( 13, 18)
( 14, 24)( 20, 25)( 29, 34)( 30, 40)( 31, 46)( 32, 52)( 33, 48)( 36, 41)
( 37, 47)( 38, 43)( 39, 49)( 45, 50)( 54, 59)( 55, 65)( 56, 71)( 57, 77)
( 58, 73)( 61, 66)( 62, 72)( 63, 68)( 64, 74)( 70, 75)( 79, 84)( 80, 90)
( 81, 96)( 82,102)( 83, 98)( 86, 91)( 87, 97)( 88, 93)( 89, 99)( 95,100);;
s2 := ( 4, 21)( 5, 9)( 6, 27)( 7, 15)( 8, 17)( 10, 18)( 12, 24)( 13, 26)
( 16, 20)( 19, 23)( 29, 46)( 30, 34)( 31, 52)( 32, 40)( 33, 42)( 35, 43)
( 37, 49)( 38, 51)( 41, 45)( 44, 48)( 53, 78)( 54, 96)( 55, 84)( 56,102)
( 57, 90)( 58, 92)( 59, 80)( 60, 93)( 61, 86)( 62, 99)( 63,101)( 64, 89)
( 65, 82)( 66, 95)( 67, 83)( 68, 85)( 69, 98)( 70, 91)( 71, 79)( 72, 97)
( 73, 94)( 74, 87)( 75,100)( 76, 88)( 77, 81);;
s3 := ( 3, 60)( 4, 54)( 5, 73)( 6, 72)( 7, 66)( 8, 65)( 9, 59)( 10, 53)
( 11, 77)( 12, 71)( 13, 70)( 14, 64)( 15, 58)( 16, 57)( 17, 76)( 18, 75)
( 19, 69)( 20, 63)( 21, 62)( 22, 56)( 23, 55)( 24, 74)( 25, 68)( 26, 67)
( 27, 61)( 28, 85)( 29, 79)( 30, 98)( 31, 97)( 32, 91)( 33, 90)( 34, 84)
( 35, 78)( 36,102)( 37, 96)( 38, 95)( 39, 89)( 40, 83)( 41, 82)( 42,101)
( 43,100)( 44, 94)( 45, 88)( 46, 87)( 47, 81)( 48, 80)( 49, 99)( 50, 93)
( 51, 92)( 52, 86);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(102)!(1,2);
s1 := Sym(102)!( 4, 9)( 5, 15)( 6, 21)( 7, 27)( 8, 23)( 11, 16)( 12, 22)
( 13, 18)( 14, 24)( 20, 25)( 29, 34)( 30, 40)( 31, 46)( 32, 52)( 33, 48)
( 36, 41)( 37, 47)( 38, 43)( 39, 49)( 45, 50)( 54, 59)( 55, 65)( 56, 71)
( 57, 77)( 58, 73)( 61, 66)( 62, 72)( 63, 68)( 64, 74)( 70, 75)( 79, 84)
( 80, 90)( 81, 96)( 82,102)( 83, 98)( 86, 91)( 87, 97)( 88, 93)( 89, 99)
( 95,100);
s2 := Sym(102)!( 4, 21)( 5, 9)( 6, 27)( 7, 15)( 8, 17)( 10, 18)( 12, 24)
( 13, 26)( 16, 20)( 19, 23)( 29, 46)( 30, 34)( 31, 52)( 32, 40)( 33, 42)
( 35, 43)( 37, 49)( 38, 51)( 41, 45)( 44, 48)( 53, 78)( 54, 96)( 55, 84)
( 56,102)( 57, 90)( 58, 92)( 59, 80)( 60, 93)( 61, 86)( 62, 99)( 63,101)
( 64, 89)( 65, 82)( 66, 95)( 67, 83)( 68, 85)( 69, 98)( 70, 91)( 71, 79)
( 72, 97)( 73, 94)( 74, 87)( 75,100)( 76, 88)( 77, 81);
s3 := Sym(102)!( 3, 60)( 4, 54)( 5, 73)( 6, 72)( 7, 66)( 8, 65)( 9, 59)
( 10, 53)( 11, 77)( 12, 71)( 13, 70)( 14, 64)( 15, 58)( 16, 57)( 17, 76)
( 18, 75)( 19, 69)( 20, 63)( 21, 62)( 22, 56)( 23, 55)( 24, 74)( 25, 68)
( 26, 67)( 27, 61)( 28, 85)( 29, 79)( 30, 98)( 31, 97)( 32, 91)( 33, 90)
( 34, 84)( 35, 78)( 36,102)( 37, 96)( 38, 95)( 39, 89)( 40, 83)( 41, 82)
( 42,101)( 43,100)( 44, 94)( 45, 88)( 46, 87)( 47, 81)( 48, 80)( 49, 99)
( 50, 93)( 51, 92)( 52, 86);
poly := sub<Sym(102)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 >;
to this polytope