Polytope of Type {4,10,10,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,10,10,2}*1600b
if this polytope has a name.
Group : SmallGroup(1600,10169)
Rank : 5
Schlafli Type : {4,10,10,2}
Number of vertices, edges, etc : 4, 20, 50, 10, 2
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,10,10,2}*800c
   4-fold quotients : {2,5,10,2}*400
   5-fold quotients : {4,10,2,2}*320
   10-fold quotients : {2,10,2,2}*160
   20-fold quotients : {2,5,2,2}*80
   25-fold quotients : {4,2,2,2}*64
   50-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 51, 76)( 52, 77)( 53, 78)( 54, 79)( 55, 80)( 56, 81)( 57, 82)( 58, 83)
( 59, 84)( 60, 85)( 61, 86)( 62, 87)( 63, 88)( 64, 89)( 65, 90)( 66, 91)
( 67, 92)( 68, 93)( 69, 94)( 70, 95)( 71, 96)( 72, 97)( 73, 98)( 74, 99)
( 75,100);;
s1 := (  1, 51)(  2, 55)(  3, 54)(  4, 53)(  5, 52)(  6, 71)(  7, 75)(  8, 74)
(  9, 73)( 10, 72)( 11, 66)( 12, 70)( 13, 69)( 14, 68)( 15, 67)( 16, 61)
( 17, 65)( 18, 64)( 19, 63)( 20, 62)( 21, 56)( 22, 60)( 23, 59)( 24, 58)
( 25, 57)( 26, 76)( 27, 80)( 28, 79)( 29, 78)( 30, 77)( 31, 96)( 32,100)
( 33, 99)( 34, 98)( 35, 97)( 36, 91)( 37, 95)( 38, 94)( 39, 93)( 40, 92)
( 41, 86)( 42, 90)( 43, 89)( 44, 88)( 45, 87)( 46, 81)( 47, 85)( 48, 84)
( 49, 83)( 50, 82);;
s2 := (  1,  7)(  2,  6)(  3, 10)(  4,  9)(  5,  8)( 11, 22)( 12, 21)( 13, 25)
( 14, 24)( 15, 23)( 16, 17)( 18, 20)( 26, 32)( 27, 31)( 28, 35)( 29, 34)
( 30, 33)( 36, 47)( 37, 46)( 38, 50)( 39, 49)( 40, 48)( 41, 42)( 43, 45)
( 51, 57)( 52, 56)( 53, 60)( 54, 59)( 55, 58)( 61, 72)( 62, 71)( 63, 75)
( 64, 74)( 65, 73)( 66, 67)( 68, 70)( 76, 82)( 77, 81)( 78, 85)( 79, 84)
( 80, 83)( 86, 97)( 87, 96)( 88,100)( 89, 99)( 90, 98)( 91, 92)( 93, 95);;
s3 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)( 38, 39)
( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)( 58, 59)
( 62, 65)( 63, 64)( 67, 70)( 68, 69)( 72, 75)( 73, 74)( 77, 80)( 78, 79)
( 82, 85)( 83, 84)( 87, 90)( 88, 89)( 92, 95)( 93, 94)( 97,100)( 98, 99);;
s4 := (101,102);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(102)!( 51, 76)( 52, 77)( 53, 78)( 54, 79)( 55, 80)( 56, 81)( 57, 82)
( 58, 83)( 59, 84)( 60, 85)( 61, 86)( 62, 87)( 63, 88)( 64, 89)( 65, 90)
( 66, 91)( 67, 92)( 68, 93)( 69, 94)( 70, 95)( 71, 96)( 72, 97)( 73, 98)
( 74, 99)( 75,100);
s1 := Sym(102)!(  1, 51)(  2, 55)(  3, 54)(  4, 53)(  5, 52)(  6, 71)(  7, 75)
(  8, 74)(  9, 73)( 10, 72)( 11, 66)( 12, 70)( 13, 69)( 14, 68)( 15, 67)
( 16, 61)( 17, 65)( 18, 64)( 19, 63)( 20, 62)( 21, 56)( 22, 60)( 23, 59)
( 24, 58)( 25, 57)( 26, 76)( 27, 80)( 28, 79)( 29, 78)( 30, 77)( 31, 96)
( 32,100)( 33, 99)( 34, 98)( 35, 97)( 36, 91)( 37, 95)( 38, 94)( 39, 93)
( 40, 92)( 41, 86)( 42, 90)( 43, 89)( 44, 88)( 45, 87)( 46, 81)( 47, 85)
( 48, 84)( 49, 83)( 50, 82);
s2 := Sym(102)!(  1,  7)(  2,  6)(  3, 10)(  4,  9)(  5,  8)( 11, 22)( 12, 21)
( 13, 25)( 14, 24)( 15, 23)( 16, 17)( 18, 20)( 26, 32)( 27, 31)( 28, 35)
( 29, 34)( 30, 33)( 36, 47)( 37, 46)( 38, 50)( 39, 49)( 40, 48)( 41, 42)
( 43, 45)( 51, 57)( 52, 56)( 53, 60)( 54, 59)( 55, 58)( 61, 72)( 62, 71)
( 63, 75)( 64, 74)( 65, 73)( 66, 67)( 68, 70)( 76, 82)( 77, 81)( 78, 85)
( 79, 84)( 80, 83)( 86, 97)( 87, 96)( 88,100)( 89, 99)( 90, 98)( 91, 92)
( 93, 95);
s3 := Sym(102)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)
( 38, 39)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)
( 58, 59)( 62, 65)( 63, 64)( 67, 70)( 68, 69)( 72, 75)( 73, 74)( 77, 80)
( 78, 79)( 82, 85)( 83, 84)( 87, 90)( 88, 89)( 92, 95)( 93, 94)( 97,100)
( 98, 99);
s4 := Sym(102)!(101,102);
poly := sub<Sym(102)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope