include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,5,10,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,5,10,4,2}*1600
if this polytope has a name.
Group : SmallGroup(1600,10205)
Rank : 6
Schlafli Type : {2,5,10,4,2}
Number of vertices, edges, etc : 2, 5, 25, 20, 4, 2
Order of s0s1s2s3s4s5 : 20
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,5,10,2,2}*800
5-fold quotients : {2,5,2,4,2}*320
10-fold quotients : {2,5,2,2,2}*160
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 8, 23)( 9, 27)( 10, 26)( 11, 25)( 12, 24)( 13, 18)
( 14, 22)( 15, 21)( 16, 20)( 17, 19)( 29, 32)( 30, 31)( 33, 48)( 34, 52)
( 35, 51)( 36, 50)( 37, 49)( 38, 43)( 39, 47)( 40, 46)( 41, 45)( 42, 44)
( 54, 57)( 55, 56)( 58, 73)( 59, 77)( 60, 76)( 61, 75)( 62, 74)( 63, 68)
( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 79, 82)( 80, 81)( 83, 98)( 84,102)
( 85,101)( 86,100)( 87, 99)( 88, 93)( 89, 97)( 90, 96)( 91, 95)( 92, 94);;
s2 := ( 3, 9)( 4, 8)( 5, 12)( 6, 11)( 7, 10)( 13, 24)( 14, 23)( 15, 27)
( 16, 26)( 17, 25)( 18, 19)( 20, 22)( 28, 34)( 29, 33)( 30, 37)( 31, 36)
( 32, 35)( 38, 49)( 39, 48)( 40, 52)( 41, 51)( 42, 50)( 43, 44)( 45, 47)
( 53, 59)( 54, 58)( 55, 62)( 56, 61)( 57, 60)( 63, 74)( 64, 73)( 65, 77)
( 66, 76)( 67, 75)( 68, 69)( 70, 72)( 78, 84)( 79, 83)( 80, 87)( 81, 86)
( 82, 85)( 88, 99)( 89, 98)( 90,102)( 91,101)( 92,100)( 93, 94)( 95, 97);;
s3 := ( 4, 7)( 5, 6)( 9, 12)( 10, 11)( 14, 17)( 15, 16)( 19, 22)( 20, 21)
( 24, 27)( 25, 26)( 29, 32)( 30, 31)( 34, 37)( 35, 36)( 39, 42)( 40, 41)
( 44, 47)( 45, 46)( 49, 52)( 50, 51)( 53, 78)( 54, 82)( 55, 81)( 56, 80)
( 57, 79)( 58, 83)( 59, 87)( 60, 86)( 61, 85)( 62, 84)( 63, 88)( 64, 92)
( 65, 91)( 66, 90)( 67, 89)( 68, 93)( 69, 97)( 70, 96)( 71, 95)( 72, 94)
( 73, 98)( 74,102)( 75,101)( 76,100)( 77, 99);;
s4 := ( 3, 53)( 4, 54)( 5, 55)( 6, 56)( 7, 57)( 8, 58)( 9, 59)( 10, 60)
( 11, 61)( 12, 62)( 13, 63)( 14, 64)( 15, 65)( 16, 66)( 17, 67)( 18, 68)
( 19, 69)( 20, 70)( 21, 71)( 22, 72)( 23, 73)( 24, 74)( 25, 75)( 26, 76)
( 27, 77)( 28, 78)( 29, 79)( 30, 80)( 31, 81)( 32, 82)( 33, 83)( 34, 84)
( 35, 85)( 36, 86)( 37, 87)( 38, 88)( 39, 89)( 40, 90)( 41, 91)( 42, 92)
( 43, 93)( 44, 94)( 45, 95)( 46, 96)( 47, 97)( 48, 98)( 49, 99)( 50,100)
( 51,101)( 52,102);;
s5 := (103,104);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(104)!(1,2);
s1 := Sym(104)!( 4, 7)( 5, 6)( 8, 23)( 9, 27)( 10, 26)( 11, 25)( 12, 24)
( 13, 18)( 14, 22)( 15, 21)( 16, 20)( 17, 19)( 29, 32)( 30, 31)( 33, 48)
( 34, 52)( 35, 51)( 36, 50)( 37, 49)( 38, 43)( 39, 47)( 40, 46)( 41, 45)
( 42, 44)( 54, 57)( 55, 56)( 58, 73)( 59, 77)( 60, 76)( 61, 75)( 62, 74)
( 63, 68)( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 79, 82)( 80, 81)( 83, 98)
( 84,102)( 85,101)( 86,100)( 87, 99)( 88, 93)( 89, 97)( 90, 96)( 91, 95)
( 92, 94);
s2 := Sym(104)!( 3, 9)( 4, 8)( 5, 12)( 6, 11)( 7, 10)( 13, 24)( 14, 23)
( 15, 27)( 16, 26)( 17, 25)( 18, 19)( 20, 22)( 28, 34)( 29, 33)( 30, 37)
( 31, 36)( 32, 35)( 38, 49)( 39, 48)( 40, 52)( 41, 51)( 42, 50)( 43, 44)
( 45, 47)( 53, 59)( 54, 58)( 55, 62)( 56, 61)( 57, 60)( 63, 74)( 64, 73)
( 65, 77)( 66, 76)( 67, 75)( 68, 69)( 70, 72)( 78, 84)( 79, 83)( 80, 87)
( 81, 86)( 82, 85)( 88, 99)( 89, 98)( 90,102)( 91,101)( 92,100)( 93, 94)
( 95, 97);
s3 := Sym(104)!( 4, 7)( 5, 6)( 9, 12)( 10, 11)( 14, 17)( 15, 16)( 19, 22)
( 20, 21)( 24, 27)( 25, 26)( 29, 32)( 30, 31)( 34, 37)( 35, 36)( 39, 42)
( 40, 41)( 44, 47)( 45, 46)( 49, 52)( 50, 51)( 53, 78)( 54, 82)( 55, 81)
( 56, 80)( 57, 79)( 58, 83)( 59, 87)( 60, 86)( 61, 85)( 62, 84)( 63, 88)
( 64, 92)( 65, 91)( 66, 90)( 67, 89)( 68, 93)( 69, 97)( 70, 96)( 71, 95)
( 72, 94)( 73, 98)( 74,102)( 75,101)( 76,100)( 77, 99);
s4 := Sym(104)!( 3, 53)( 4, 54)( 5, 55)( 6, 56)( 7, 57)( 8, 58)( 9, 59)
( 10, 60)( 11, 61)( 12, 62)( 13, 63)( 14, 64)( 15, 65)( 16, 66)( 17, 67)
( 18, 68)( 19, 69)( 20, 70)( 21, 71)( 22, 72)( 23, 73)( 24, 74)( 25, 75)
( 26, 76)( 27, 77)( 28, 78)( 29, 79)( 30, 80)( 31, 81)( 32, 82)( 33, 83)
( 34, 84)( 35, 85)( 36, 86)( 37, 87)( 38, 88)( 39, 89)( 40, 90)( 41, 91)
( 42, 92)( 43, 93)( 44, 94)( 45, 95)( 46, 96)( 47, 97)( 48, 98)( 49, 99)
( 50,100)( 51,101)( 52,102);
s5 := Sym(104)!(103,104);
poly := sub<Sym(104)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope