include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,10,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,4,2}*1600
if this polytope has a name.
Group : SmallGroup(1600,10271)
Rank : 5
Schlafli Type : {2,10,4,2}
Number of vertices, edges, etc : 2, 50, 100, 20, 2
Order of s0s1s2s3s4 : 4
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,10,4,2}*800
25-fold quotients : {2,2,4,2}*64
50-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 28)( 4, 32)( 5, 31)( 6, 30)( 7, 29)( 8, 48)( 9, 52)( 10, 51)
( 11, 50)( 12, 49)( 13, 43)( 14, 47)( 15, 46)( 16, 45)( 17, 44)( 18, 38)
( 19, 42)( 20, 41)( 21, 40)( 22, 39)( 23, 33)( 24, 37)( 25, 36)( 26, 35)
( 27, 34)( 53, 78)( 54, 82)( 55, 81)( 56, 80)( 57, 79)( 58, 98)( 59,102)
( 60,101)( 61,100)( 62, 99)( 63, 93)( 64, 97)( 65, 96)( 66, 95)( 67, 94)
( 68, 88)( 69, 92)( 70, 91)( 71, 90)( 72, 89)( 73, 83)( 74, 87)( 75, 86)
( 76, 85)( 77, 84);;
s2 := ( 3, 10)( 4, 20)( 6, 15)( 7, 25)( 9, 18)( 11, 13)( 12, 23)( 14, 21)
( 17, 26)( 22, 24)( 28, 35)( 29, 45)( 31, 40)( 32, 50)( 34, 43)( 36, 38)
( 37, 48)( 39, 46)( 42, 51)( 47, 49)( 53, 60)( 54, 70)( 56, 65)( 57, 75)
( 59, 68)( 61, 63)( 62, 73)( 64, 71)( 67, 76)( 72, 74)( 78, 85)( 79, 95)
( 81, 90)( 82,100)( 84, 93)( 86, 88)( 87, 98)( 89, 96)( 92,101)( 97, 99);;
s3 := ( 3, 53)( 4, 58)( 5, 63)( 6, 68)( 7, 73)( 8, 54)( 9, 59)( 10, 64)
( 11, 69)( 12, 74)( 13, 55)( 14, 60)( 15, 65)( 16, 70)( 17, 75)( 18, 56)
( 19, 61)( 20, 66)( 21, 71)( 22, 76)( 23, 57)( 24, 62)( 25, 67)( 26, 72)
( 27, 77)( 28, 78)( 29, 83)( 30, 88)( 31, 93)( 32, 98)( 33, 79)( 34, 84)
( 35, 89)( 36, 94)( 37, 99)( 38, 80)( 39, 85)( 40, 90)( 41, 95)( 42,100)
( 43, 81)( 44, 86)( 45, 91)( 46, 96)( 47,101)( 48, 82)( 49, 87)( 50, 92)
( 51, 97)( 52,102);;
s4 := (103,104);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(104)!(1,2);
s1 := Sym(104)!( 3, 28)( 4, 32)( 5, 31)( 6, 30)( 7, 29)( 8, 48)( 9, 52)
( 10, 51)( 11, 50)( 12, 49)( 13, 43)( 14, 47)( 15, 46)( 16, 45)( 17, 44)
( 18, 38)( 19, 42)( 20, 41)( 21, 40)( 22, 39)( 23, 33)( 24, 37)( 25, 36)
( 26, 35)( 27, 34)( 53, 78)( 54, 82)( 55, 81)( 56, 80)( 57, 79)( 58, 98)
( 59,102)( 60,101)( 61,100)( 62, 99)( 63, 93)( 64, 97)( 65, 96)( 66, 95)
( 67, 94)( 68, 88)( 69, 92)( 70, 91)( 71, 90)( 72, 89)( 73, 83)( 74, 87)
( 75, 86)( 76, 85)( 77, 84);
s2 := Sym(104)!( 3, 10)( 4, 20)( 6, 15)( 7, 25)( 9, 18)( 11, 13)( 12, 23)
( 14, 21)( 17, 26)( 22, 24)( 28, 35)( 29, 45)( 31, 40)( 32, 50)( 34, 43)
( 36, 38)( 37, 48)( 39, 46)( 42, 51)( 47, 49)( 53, 60)( 54, 70)( 56, 65)
( 57, 75)( 59, 68)( 61, 63)( 62, 73)( 64, 71)( 67, 76)( 72, 74)( 78, 85)
( 79, 95)( 81, 90)( 82,100)( 84, 93)( 86, 88)( 87, 98)( 89, 96)( 92,101)
( 97, 99);
s3 := Sym(104)!( 3, 53)( 4, 58)( 5, 63)( 6, 68)( 7, 73)( 8, 54)( 9, 59)
( 10, 64)( 11, 69)( 12, 74)( 13, 55)( 14, 60)( 15, 65)( 16, 70)( 17, 75)
( 18, 56)( 19, 61)( 20, 66)( 21, 71)( 22, 76)( 23, 57)( 24, 62)( 25, 67)
( 26, 72)( 27, 77)( 28, 78)( 29, 83)( 30, 88)( 31, 93)( 32, 98)( 33, 79)
( 34, 84)( 35, 89)( 36, 94)( 37, 99)( 38, 80)( 39, 85)( 40, 90)( 41, 95)
( 42,100)( 43, 81)( 44, 86)( 45, 91)( 46, 96)( 47,101)( 48, 82)( 49, 87)
( 50, 92)( 51, 97)( 52,102);
s4 := Sym(104)!(103,104);
poly := sub<Sym(104)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope