include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,4,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,4}*1600
if this polytope has a name.
Group : SmallGroup(1600,10271)
Rank : 5
Schlafli Type : {2,2,4,4}
Number of vertices, edges, etc : 2, 2, 50, 100, 50
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,4,4}*800
50-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 15)( 7, 25)( 8, 10)( 9, 20)( 11, 18)( 12, 28)( 14, 23)( 17, 26)
( 19, 21)( 22, 29)( 31, 40)( 32, 50)( 33, 35)( 34, 45)( 36, 43)( 37, 53)
( 39, 48)( 42, 51)( 44, 46)( 47, 54)( 56, 65)( 57, 75)( 58, 60)( 59, 70)
( 61, 68)( 62, 78)( 64, 73)( 67, 76)( 69, 71)( 72, 79)( 81, 90)( 82,100)
( 83, 85)( 84, 95)( 86, 93)( 87,103)( 89, 98)( 92,101)( 94, 96)( 97,104);;
s3 := ( 5, 55)( 6, 60)( 7, 65)( 8, 70)( 9, 75)( 10, 56)( 11, 61)( 12, 66)
( 13, 71)( 14, 76)( 15, 57)( 16, 62)( 17, 67)( 18, 72)( 19, 77)( 20, 58)
( 21, 63)( 22, 68)( 23, 73)( 24, 78)( 25, 59)( 26, 64)( 27, 69)( 28, 74)
( 29, 79)( 30, 80)( 31, 85)( 32, 90)( 33, 95)( 34,100)( 35, 81)( 36, 86)
( 37, 91)( 38, 96)( 39,101)( 40, 82)( 41, 87)( 42, 92)( 43, 97)( 44,102)
( 45, 83)( 46, 88)( 47, 93)( 48, 98)( 49,103)( 50, 84)( 51, 89)( 52, 94)
( 53, 99)( 54,104);;
s4 := ( 5, 41)( 6, 31)( 7, 46)( 8, 36)( 9, 51)( 10, 43)( 11, 33)( 12, 48)
( 13, 38)( 14, 53)( 15, 40)( 16, 30)( 17, 45)( 18, 35)( 19, 50)( 20, 42)
( 21, 32)( 22, 47)( 23, 37)( 24, 52)( 25, 44)( 26, 34)( 27, 49)( 28, 39)
( 29, 54)( 55, 91)( 56, 81)( 57, 96)( 58, 86)( 59,101)( 60, 93)( 61, 83)
( 62, 98)( 63, 88)( 64,103)( 65, 90)( 66, 80)( 67, 95)( 68, 85)( 69,100)
( 70, 92)( 71, 82)( 72, 97)( 73, 87)( 74,102)( 75, 94)( 76, 84)( 77, 99)
( 78, 89)( 79,104);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(104)!(1,2);
s1 := Sym(104)!(3,4);
s2 := Sym(104)!( 6, 15)( 7, 25)( 8, 10)( 9, 20)( 11, 18)( 12, 28)( 14, 23)
( 17, 26)( 19, 21)( 22, 29)( 31, 40)( 32, 50)( 33, 35)( 34, 45)( 36, 43)
( 37, 53)( 39, 48)( 42, 51)( 44, 46)( 47, 54)( 56, 65)( 57, 75)( 58, 60)
( 59, 70)( 61, 68)( 62, 78)( 64, 73)( 67, 76)( 69, 71)( 72, 79)( 81, 90)
( 82,100)( 83, 85)( 84, 95)( 86, 93)( 87,103)( 89, 98)( 92,101)( 94, 96)
( 97,104);
s3 := Sym(104)!( 5, 55)( 6, 60)( 7, 65)( 8, 70)( 9, 75)( 10, 56)( 11, 61)
( 12, 66)( 13, 71)( 14, 76)( 15, 57)( 16, 62)( 17, 67)( 18, 72)( 19, 77)
( 20, 58)( 21, 63)( 22, 68)( 23, 73)( 24, 78)( 25, 59)( 26, 64)( 27, 69)
( 28, 74)( 29, 79)( 30, 80)( 31, 85)( 32, 90)( 33, 95)( 34,100)( 35, 81)
( 36, 86)( 37, 91)( 38, 96)( 39,101)( 40, 82)( 41, 87)( 42, 92)( 43, 97)
( 44,102)( 45, 83)( 46, 88)( 47, 93)( 48, 98)( 49,103)( 50, 84)( 51, 89)
( 52, 94)( 53, 99)( 54,104);
s4 := Sym(104)!( 5, 41)( 6, 31)( 7, 46)( 8, 36)( 9, 51)( 10, 43)( 11, 33)
( 12, 48)( 13, 38)( 14, 53)( 15, 40)( 16, 30)( 17, 45)( 18, 35)( 19, 50)
( 20, 42)( 21, 32)( 22, 47)( 23, 37)( 24, 52)( 25, 44)( 26, 34)( 27, 49)
( 28, 39)( 29, 54)( 55, 91)( 56, 81)( 57, 96)( 58, 86)( 59,101)( 60, 93)
( 61, 83)( 62, 98)( 63, 88)( 64,103)( 65, 90)( 66, 80)( 67, 95)( 68, 85)
( 69,100)( 70, 92)( 71, 82)( 72, 97)( 73, 87)( 74,102)( 75, 94)( 76, 84)
( 77, 99)( 78, 89)( 79,104);
poly := sub<Sym(104)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 >;
to this polytope