include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {20,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,20}*1600c
if this polytope has a name.
Group : SmallGroup(1600,2943)
Rank : 3
Schlafli Type : {20,20}
Number of vertices, edges, etc : 40, 400, 40
Order of s0s1s2 : 20
Order of s0s1s2s1 : 20
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {20,20}*800c
4-fold quotients : {20,10}*400b, {10,20}*400c
5-fold quotients : {20,4}*320
8-fold quotients : {10,10}*200c
10-fold quotients : {20,4}*160
16-fold quotients : {5,10}*100
20-fold quotients : {20,2}*80, {10,4}*80
25-fold quotients : {4,4}*64
40-fold quotients : {10,2}*40
50-fold quotients : {4,4}*32
80-fold quotients : {5,2}*20
100-fold quotients : {2,4}*16, {4,2}*16
200-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 21)( 7, 25)( 8, 24)( 9, 23)( 10, 22)( 11, 16)
( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)( 32, 50)
( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)
( 51, 76)( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56, 96)( 57,100)( 58, 99)
( 59, 98)( 60, 97)( 61, 91)( 62, 95)( 63, 94)( 64, 93)( 65, 92)( 66, 86)
( 67, 90)( 68, 89)( 69, 88)( 70, 87)( 71, 81)( 72, 85)( 73, 84)( 74, 83)
( 75, 82)(101,126)(102,130)(103,129)(104,128)(105,127)(106,146)(107,150)
(108,149)(109,148)(110,147)(111,141)(112,145)(113,144)(114,143)(115,142)
(116,136)(117,140)(118,139)(119,138)(120,137)(121,131)(122,135)(123,134)
(124,133)(125,132)(152,155)(153,154)(156,171)(157,175)(158,174)(159,173)
(160,172)(161,166)(162,170)(163,169)(164,168)(165,167)(177,180)(178,179)
(181,196)(182,200)(183,199)(184,198)(185,197)(186,191)(187,195)(188,194)
(189,193)(190,192)(201,376)(202,380)(203,379)(204,378)(205,377)(206,396)
(207,400)(208,399)(209,398)(210,397)(211,391)(212,395)(213,394)(214,393)
(215,392)(216,386)(217,390)(218,389)(219,388)(220,387)(221,381)(222,385)
(223,384)(224,383)(225,382)(226,351)(227,355)(228,354)(229,353)(230,352)
(231,371)(232,375)(233,374)(234,373)(235,372)(236,366)(237,370)(238,369)
(239,368)(240,367)(241,361)(242,365)(243,364)(244,363)(245,362)(246,356)
(247,360)(248,359)(249,358)(250,357)(251,301)(252,305)(253,304)(254,303)
(255,302)(256,321)(257,325)(258,324)(259,323)(260,322)(261,316)(262,320)
(263,319)(264,318)(265,317)(266,311)(267,315)(268,314)(269,313)(270,312)
(271,306)(272,310)(273,309)(274,308)(275,307)(276,326)(277,330)(278,329)
(279,328)(280,327)(281,346)(282,350)(283,349)(284,348)(285,347)(286,341)
(287,345)(288,344)(289,343)(290,342)(291,336)(292,340)(293,339)(294,338)
(295,337)(296,331)(297,335)(298,334)(299,333)(300,332);;
s1 := ( 1,207)( 2,206)( 3,210)( 4,209)( 5,208)( 6,202)( 7,201)( 8,205)
( 9,204)( 10,203)( 11,222)( 12,221)( 13,225)( 14,224)( 15,223)( 16,217)
( 17,216)( 18,220)( 19,219)( 20,218)( 21,212)( 22,211)( 23,215)( 24,214)
( 25,213)( 26,232)( 27,231)( 28,235)( 29,234)( 30,233)( 31,227)( 32,226)
( 33,230)( 34,229)( 35,228)( 36,247)( 37,246)( 38,250)( 39,249)( 40,248)
( 41,242)( 42,241)( 43,245)( 44,244)( 45,243)( 46,237)( 47,236)( 48,240)
( 49,239)( 50,238)( 51,257)( 52,256)( 53,260)( 54,259)( 55,258)( 56,252)
( 57,251)( 58,255)( 59,254)( 60,253)( 61,272)( 62,271)( 63,275)( 64,274)
( 65,273)( 66,267)( 67,266)( 68,270)( 69,269)( 70,268)( 71,262)( 72,261)
( 73,265)( 74,264)( 75,263)( 76,282)( 77,281)( 78,285)( 79,284)( 80,283)
( 81,277)( 82,276)( 83,280)( 84,279)( 85,278)( 86,297)( 87,296)( 88,300)
( 89,299)( 90,298)( 91,292)( 92,291)( 93,295)( 94,294)( 95,293)( 96,287)
( 97,286)( 98,290)( 99,289)(100,288)(101,307)(102,306)(103,310)(104,309)
(105,308)(106,302)(107,301)(108,305)(109,304)(110,303)(111,322)(112,321)
(113,325)(114,324)(115,323)(116,317)(117,316)(118,320)(119,319)(120,318)
(121,312)(122,311)(123,315)(124,314)(125,313)(126,332)(127,331)(128,335)
(129,334)(130,333)(131,327)(132,326)(133,330)(134,329)(135,328)(136,347)
(137,346)(138,350)(139,349)(140,348)(141,342)(142,341)(143,345)(144,344)
(145,343)(146,337)(147,336)(148,340)(149,339)(150,338)(151,357)(152,356)
(153,360)(154,359)(155,358)(156,352)(157,351)(158,355)(159,354)(160,353)
(161,372)(162,371)(163,375)(164,374)(165,373)(166,367)(167,366)(168,370)
(169,369)(170,368)(171,362)(172,361)(173,365)(174,364)(175,363)(176,382)
(177,381)(178,385)(179,384)(180,383)(181,377)(182,376)(183,380)(184,379)
(185,378)(186,397)(187,396)(188,400)(189,399)(190,398)(191,392)(192,391)
(193,395)(194,394)(195,393)(196,387)(197,386)(198,390)(199,389)(200,388);;
s2 := ( 6, 21)( 7, 22)( 8, 23)( 9, 24)( 10, 25)( 11, 16)( 12, 17)( 13, 18)
( 14, 19)( 15, 20)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 41)
( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 56, 71)( 57, 72)( 58, 73)( 59, 74)
( 60, 75)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81, 96)( 82, 97)
( 83, 98)( 84, 99)( 85,100)( 86, 91)( 87, 92)( 88, 93)( 89, 94)( 90, 95)
(101,126)(102,127)(103,128)(104,129)(105,130)(106,146)(107,147)(108,148)
(109,149)(110,150)(111,141)(112,142)(113,143)(114,144)(115,145)(116,136)
(117,137)(118,138)(119,139)(120,140)(121,131)(122,132)(123,133)(124,134)
(125,135)(151,176)(152,177)(153,178)(154,179)(155,180)(156,196)(157,197)
(158,198)(159,199)(160,200)(161,191)(162,192)(163,193)(164,194)(165,195)
(166,186)(167,187)(168,188)(169,189)(170,190)(171,181)(172,182)(173,183)
(174,184)(175,185)(201,251)(202,252)(203,253)(204,254)(205,255)(206,271)
(207,272)(208,273)(209,274)(210,275)(211,266)(212,267)(213,268)(214,269)
(215,270)(216,261)(217,262)(218,263)(219,264)(220,265)(221,256)(222,257)
(223,258)(224,259)(225,260)(226,276)(227,277)(228,278)(229,279)(230,280)
(231,296)(232,297)(233,298)(234,299)(235,300)(236,291)(237,292)(238,293)
(239,294)(240,295)(241,286)(242,287)(243,288)(244,289)(245,290)(246,281)
(247,282)(248,283)(249,284)(250,285)(301,376)(302,377)(303,378)(304,379)
(305,380)(306,396)(307,397)(308,398)(309,399)(310,400)(311,391)(312,392)
(313,393)(314,394)(315,395)(316,386)(317,387)(318,388)(319,389)(320,390)
(321,381)(322,382)(323,383)(324,384)(325,385)(326,351)(327,352)(328,353)
(329,354)(330,355)(331,371)(332,372)(333,373)(334,374)(335,375)(336,366)
(337,367)(338,368)(339,369)(340,370)(341,361)(342,362)(343,363)(344,364)
(345,365)(346,356)(347,357)(348,358)(349,359)(350,360);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(400)!( 2, 5)( 3, 4)( 6, 21)( 7, 25)( 8, 24)( 9, 23)( 10, 22)
( 11, 16)( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)
( 32, 50)( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)
( 40, 42)( 51, 76)( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56, 96)( 57,100)
( 58, 99)( 59, 98)( 60, 97)( 61, 91)( 62, 95)( 63, 94)( 64, 93)( 65, 92)
( 66, 86)( 67, 90)( 68, 89)( 69, 88)( 70, 87)( 71, 81)( 72, 85)( 73, 84)
( 74, 83)( 75, 82)(101,126)(102,130)(103,129)(104,128)(105,127)(106,146)
(107,150)(108,149)(109,148)(110,147)(111,141)(112,145)(113,144)(114,143)
(115,142)(116,136)(117,140)(118,139)(119,138)(120,137)(121,131)(122,135)
(123,134)(124,133)(125,132)(152,155)(153,154)(156,171)(157,175)(158,174)
(159,173)(160,172)(161,166)(162,170)(163,169)(164,168)(165,167)(177,180)
(178,179)(181,196)(182,200)(183,199)(184,198)(185,197)(186,191)(187,195)
(188,194)(189,193)(190,192)(201,376)(202,380)(203,379)(204,378)(205,377)
(206,396)(207,400)(208,399)(209,398)(210,397)(211,391)(212,395)(213,394)
(214,393)(215,392)(216,386)(217,390)(218,389)(219,388)(220,387)(221,381)
(222,385)(223,384)(224,383)(225,382)(226,351)(227,355)(228,354)(229,353)
(230,352)(231,371)(232,375)(233,374)(234,373)(235,372)(236,366)(237,370)
(238,369)(239,368)(240,367)(241,361)(242,365)(243,364)(244,363)(245,362)
(246,356)(247,360)(248,359)(249,358)(250,357)(251,301)(252,305)(253,304)
(254,303)(255,302)(256,321)(257,325)(258,324)(259,323)(260,322)(261,316)
(262,320)(263,319)(264,318)(265,317)(266,311)(267,315)(268,314)(269,313)
(270,312)(271,306)(272,310)(273,309)(274,308)(275,307)(276,326)(277,330)
(278,329)(279,328)(280,327)(281,346)(282,350)(283,349)(284,348)(285,347)
(286,341)(287,345)(288,344)(289,343)(290,342)(291,336)(292,340)(293,339)
(294,338)(295,337)(296,331)(297,335)(298,334)(299,333)(300,332);
s1 := Sym(400)!( 1,207)( 2,206)( 3,210)( 4,209)( 5,208)( 6,202)( 7,201)
( 8,205)( 9,204)( 10,203)( 11,222)( 12,221)( 13,225)( 14,224)( 15,223)
( 16,217)( 17,216)( 18,220)( 19,219)( 20,218)( 21,212)( 22,211)( 23,215)
( 24,214)( 25,213)( 26,232)( 27,231)( 28,235)( 29,234)( 30,233)( 31,227)
( 32,226)( 33,230)( 34,229)( 35,228)( 36,247)( 37,246)( 38,250)( 39,249)
( 40,248)( 41,242)( 42,241)( 43,245)( 44,244)( 45,243)( 46,237)( 47,236)
( 48,240)( 49,239)( 50,238)( 51,257)( 52,256)( 53,260)( 54,259)( 55,258)
( 56,252)( 57,251)( 58,255)( 59,254)( 60,253)( 61,272)( 62,271)( 63,275)
( 64,274)( 65,273)( 66,267)( 67,266)( 68,270)( 69,269)( 70,268)( 71,262)
( 72,261)( 73,265)( 74,264)( 75,263)( 76,282)( 77,281)( 78,285)( 79,284)
( 80,283)( 81,277)( 82,276)( 83,280)( 84,279)( 85,278)( 86,297)( 87,296)
( 88,300)( 89,299)( 90,298)( 91,292)( 92,291)( 93,295)( 94,294)( 95,293)
( 96,287)( 97,286)( 98,290)( 99,289)(100,288)(101,307)(102,306)(103,310)
(104,309)(105,308)(106,302)(107,301)(108,305)(109,304)(110,303)(111,322)
(112,321)(113,325)(114,324)(115,323)(116,317)(117,316)(118,320)(119,319)
(120,318)(121,312)(122,311)(123,315)(124,314)(125,313)(126,332)(127,331)
(128,335)(129,334)(130,333)(131,327)(132,326)(133,330)(134,329)(135,328)
(136,347)(137,346)(138,350)(139,349)(140,348)(141,342)(142,341)(143,345)
(144,344)(145,343)(146,337)(147,336)(148,340)(149,339)(150,338)(151,357)
(152,356)(153,360)(154,359)(155,358)(156,352)(157,351)(158,355)(159,354)
(160,353)(161,372)(162,371)(163,375)(164,374)(165,373)(166,367)(167,366)
(168,370)(169,369)(170,368)(171,362)(172,361)(173,365)(174,364)(175,363)
(176,382)(177,381)(178,385)(179,384)(180,383)(181,377)(182,376)(183,380)
(184,379)(185,378)(186,397)(187,396)(188,400)(189,399)(190,398)(191,392)
(192,391)(193,395)(194,394)(195,393)(196,387)(197,386)(198,390)(199,389)
(200,388);
s2 := Sym(400)!( 6, 21)( 7, 22)( 8, 23)( 9, 24)( 10, 25)( 11, 16)( 12, 17)
( 13, 18)( 14, 19)( 15, 20)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)
( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 56, 71)( 57, 72)( 58, 73)
( 59, 74)( 60, 75)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81, 96)
( 82, 97)( 83, 98)( 84, 99)( 85,100)( 86, 91)( 87, 92)( 88, 93)( 89, 94)
( 90, 95)(101,126)(102,127)(103,128)(104,129)(105,130)(106,146)(107,147)
(108,148)(109,149)(110,150)(111,141)(112,142)(113,143)(114,144)(115,145)
(116,136)(117,137)(118,138)(119,139)(120,140)(121,131)(122,132)(123,133)
(124,134)(125,135)(151,176)(152,177)(153,178)(154,179)(155,180)(156,196)
(157,197)(158,198)(159,199)(160,200)(161,191)(162,192)(163,193)(164,194)
(165,195)(166,186)(167,187)(168,188)(169,189)(170,190)(171,181)(172,182)
(173,183)(174,184)(175,185)(201,251)(202,252)(203,253)(204,254)(205,255)
(206,271)(207,272)(208,273)(209,274)(210,275)(211,266)(212,267)(213,268)
(214,269)(215,270)(216,261)(217,262)(218,263)(219,264)(220,265)(221,256)
(222,257)(223,258)(224,259)(225,260)(226,276)(227,277)(228,278)(229,279)
(230,280)(231,296)(232,297)(233,298)(234,299)(235,300)(236,291)(237,292)
(238,293)(239,294)(240,295)(241,286)(242,287)(243,288)(244,289)(245,290)
(246,281)(247,282)(248,283)(249,284)(250,285)(301,376)(302,377)(303,378)
(304,379)(305,380)(306,396)(307,397)(308,398)(309,399)(310,400)(311,391)
(312,392)(313,393)(314,394)(315,395)(316,386)(317,387)(318,388)(319,389)
(320,390)(321,381)(322,382)(323,383)(324,384)(325,385)(326,351)(327,352)
(328,353)(329,354)(330,355)(331,371)(332,372)(333,373)(334,374)(335,375)
(336,366)(337,367)(338,368)(339,369)(340,370)(341,361)(342,362)(343,363)
(344,364)(345,365)(346,356)(347,357)(348,358)(349,359)(350,360);
poly := sub<Sym(400)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope