include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,40}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,40}*1600b
if this polytope has a name.
Group : SmallGroup(1600,6690)
Rank : 3
Schlafli Type : {4,40}
Number of vertices, edges, etc : 20, 400, 200
Order of s0s1s2 : 8
Order of s0s1s2s1 : 20
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,20}*800
4-fold quotients : {4,10}*400
8-fold quotients : {4,10}*200
25-fold quotients : {4,8}*64b
50-fold quotients : {4,4}*32
100-fold quotients : {2,4}*16, {4,2}*16
200-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 12)( 3, 23)( 4, 9)( 5, 20)( 6, 21)( 8, 18)( 10, 15)( 11, 16)
( 14, 24)( 17, 22)( 27, 37)( 28, 48)( 29, 34)( 30, 45)( 31, 46)( 33, 43)
( 35, 40)( 36, 41)( 39, 49)( 42, 47)( 51, 76)( 52, 87)( 53, 98)( 54, 84)
( 55, 95)( 56, 96)( 57, 82)( 58, 93)( 59, 79)( 60, 90)( 61, 91)( 62, 77)
( 63, 88)( 64, 99)( 65, 85)( 66, 86)( 67, 97)( 68, 83)( 69, 94)( 70, 80)
( 71, 81)( 72, 92)( 73, 78)( 74, 89)( 75,100)(102,112)(103,123)(104,109)
(105,120)(106,121)(108,118)(110,115)(111,116)(114,124)(117,122)(127,137)
(128,148)(129,134)(130,145)(131,146)(133,143)(135,140)(136,141)(139,149)
(142,147)(151,176)(152,187)(153,198)(154,184)(155,195)(156,196)(157,182)
(158,193)(159,179)(160,190)(161,191)(162,177)(163,188)(164,199)(165,185)
(166,186)(167,197)(168,183)(169,194)(170,180)(171,181)(172,192)(173,178)
(174,189)(175,200);;
s1 := ( 2, 9)( 3, 12)( 4, 20)( 5, 23)( 6, 13)( 7, 16)( 8, 24)( 11, 25)
( 15, 17)( 19, 21)( 27, 34)( 28, 37)( 29, 45)( 30, 48)( 31, 38)( 32, 41)
( 33, 49)( 36, 50)( 40, 42)( 44, 46)( 51, 76)( 52, 84)( 53, 87)( 54, 95)
( 55, 98)( 56, 88)( 57, 91)( 58, 99)( 59, 77)( 60, 85)( 61,100)( 62, 78)
( 63, 81)( 64, 89)( 65, 92)( 66, 82)( 67, 90)( 68, 93)( 69, 96)( 70, 79)
( 71, 94)( 72, 97)( 73, 80)( 74, 83)( 75, 86)(101,151)(102,159)(103,162)
(104,170)(105,173)(106,163)(107,166)(108,174)(109,152)(110,160)(111,175)
(112,153)(113,156)(114,164)(115,167)(116,157)(117,165)(118,168)(119,171)
(120,154)(121,169)(122,172)(123,155)(124,158)(125,161)(126,176)(127,184)
(128,187)(129,195)(130,198)(131,188)(132,191)(133,199)(134,177)(135,185)
(136,200)(137,178)(138,181)(139,189)(140,192)(141,182)(142,190)(143,193)
(144,196)(145,179)(146,194)(147,197)(148,180)(149,183)(150,186);;
s2 := ( 1,132)( 2,131)( 3,135)( 4,134)( 5,133)( 6,127)( 7,126)( 8,130)
( 9,129)( 10,128)( 11,147)( 12,146)( 13,150)( 14,149)( 15,148)( 16,142)
( 17,141)( 18,145)( 19,144)( 20,143)( 21,137)( 22,136)( 23,140)( 24,139)
( 25,138)( 26,107)( 27,106)( 28,110)( 29,109)( 30,108)( 31,102)( 32,101)
( 33,105)( 34,104)( 35,103)( 36,122)( 37,121)( 38,125)( 39,124)( 40,123)
( 41,117)( 42,116)( 43,120)( 44,119)( 45,118)( 46,112)( 47,111)( 48,115)
( 49,114)( 50,113)( 51,157)( 52,156)( 53,160)( 54,159)( 55,158)( 56,152)
( 57,151)( 58,155)( 59,154)( 60,153)( 61,172)( 62,171)( 63,175)( 64,174)
( 65,173)( 66,167)( 67,166)( 68,170)( 69,169)( 70,168)( 71,162)( 72,161)
( 73,165)( 74,164)( 75,163)( 76,182)( 77,181)( 78,185)( 79,184)( 80,183)
( 81,177)( 82,176)( 83,180)( 84,179)( 85,178)( 86,197)( 87,196)( 88,200)
( 89,199)( 90,198)( 91,192)( 92,191)( 93,195)( 94,194)( 95,193)( 96,187)
( 97,186)( 98,190)( 99,189)(100,188);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s2*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(200)!( 2, 12)( 3, 23)( 4, 9)( 5, 20)( 6, 21)( 8, 18)( 10, 15)
( 11, 16)( 14, 24)( 17, 22)( 27, 37)( 28, 48)( 29, 34)( 30, 45)( 31, 46)
( 33, 43)( 35, 40)( 36, 41)( 39, 49)( 42, 47)( 51, 76)( 52, 87)( 53, 98)
( 54, 84)( 55, 95)( 56, 96)( 57, 82)( 58, 93)( 59, 79)( 60, 90)( 61, 91)
( 62, 77)( 63, 88)( 64, 99)( 65, 85)( 66, 86)( 67, 97)( 68, 83)( 69, 94)
( 70, 80)( 71, 81)( 72, 92)( 73, 78)( 74, 89)( 75,100)(102,112)(103,123)
(104,109)(105,120)(106,121)(108,118)(110,115)(111,116)(114,124)(117,122)
(127,137)(128,148)(129,134)(130,145)(131,146)(133,143)(135,140)(136,141)
(139,149)(142,147)(151,176)(152,187)(153,198)(154,184)(155,195)(156,196)
(157,182)(158,193)(159,179)(160,190)(161,191)(162,177)(163,188)(164,199)
(165,185)(166,186)(167,197)(168,183)(169,194)(170,180)(171,181)(172,192)
(173,178)(174,189)(175,200);
s1 := Sym(200)!( 2, 9)( 3, 12)( 4, 20)( 5, 23)( 6, 13)( 7, 16)( 8, 24)
( 11, 25)( 15, 17)( 19, 21)( 27, 34)( 28, 37)( 29, 45)( 30, 48)( 31, 38)
( 32, 41)( 33, 49)( 36, 50)( 40, 42)( 44, 46)( 51, 76)( 52, 84)( 53, 87)
( 54, 95)( 55, 98)( 56, 88)( 57, 91)( 58, 99)( 59, 77)( 60, 85)( 61,100)
( 62, 78)( 63, 81)( 64, 89)( 65, 92)( 66, 82)( 67, 90)( 68, 93)( 69, 96)
( 70, 79)( 71, 94)( 72, 97)( 73, 80)( 74, 83)( 75, 86)(101,151)(102,159)
(103,162)(104,170)(105,173)(106,163)(107,166)(108,174)(109,152)(110,160)
(111,175)(112,153)(113,156)(114,164)(115,167)(116,157)(117,165)(118,168)
(119,171)(120,154)(121,169)(122,172)(123,155)(124,158)(125,161)(126,176)
(127,184)(128,187)(129,195)(130,198)(131,188)(132,191)(133,199)(134,177)
(135,185)(136,200)(137,178)(138,181)(139,189)(140,192)(141,182)(142,190)
(143,193)(144,196)(145,179)(146,194)(147,197)(148,180)(149,183)(150,186);
s2 := Sym(200)!( 1,132)( 2,131)( 3,135)( 4,134)( 5,133)( 6,127)( 7,126)
( 8,130)( 9,129)( 10,128)( 11,147)( 12,146)( 13,150)( 14,149)( 15,148)
( 16,142)( 17,141)( 18,145)( 19,144)( 20,143)( 21,137)( 22,136)( 23,140)
( 24,139)( 25,138)( 26,107)( 27,106)( 28,110)( 29,109)( 30,108)( 31,102)
( 32,101)( 33,105)( 34,104)( 35,103)( 36,122)( 37,121)( 38,125)( 39,124)
( 40,123)( 41,117)( 42,116)( 43,120)( 44,119)( 45,118)( 46,112)( 47,111)
( 48,115)( 49,114)( 50,113)( 51,157)( 52,156)( 53,160)( 54,159)( 55,158)
( 56,152)( 57,151)( 58,155)( 59,154)( 60,153)( 61,172)( 62,171)( 63,175)
( 64,174)( 65,173)( 66,167)( 67,166)( 68,170)( 69,169)( 70,168)( 71,162)
( 72,161)( 73,165)( 74,164)( 75,163)( 76,182)( 77,181)( 78,185)( 79,184)
( 80,183)( 81,177)( 82,176)( 83,180)( 84,179)( 85,178)( 86,197)( 87,196)
( 88,200)( 89,199)( 90,198)( 91,192)( 92,191)( 93,195)( 94,194)( 95,193)
( 96,187)( 97,186)( 98,190)( 99,189)(100,188);
poly := sub<Sym(200)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s2*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1 >;
References : None.
to this polytope