Polytope of Type {3,6,15}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,15}*1620b
if this polytope has a name.
Group : SmallGroup(1620,136)
Rank : 4
Schlafli Type : {3,6,15}
Number of vertices, edges, etc : 3, 27, 135, 45
Order of s0s1s2s3 : 45
Order of s0s1s2s3s2s1 : 6
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,6,15}*540
   5-fold quotients : {3,6,3}*324a
   9-fold quotients : {3,2,15}*180
   15-fold quotients : {3,6,3}*108
   27-fold quotients : {3,2,5}*60
   45-fold quotients : {3,2,3}*36
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)( 33, 35)
( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 46, 91)( 47, 93)( 48, 92)( 49, 97)
( 50, 99)( 51, 98)( 52, 94)( 53, 96)( 54, 95)( 55,100)( 56,102)( 57,101)
( 58,106)( 59,108)( 60,107)( 61,103)( 62,105)( 63,104)( 64,109)( 65,111)
( 66,110)( 67,115)( 68,117)( 69,116)( 70,112)( 71,114)( 72,113)( 73,118)
( 74,120)( 75,119)( 76,124)( 77,126)( 78,125)( 79,121)( 80,123)( 81,122)
( 82,127)( 83,129)( 84,128)( 85,133)( 86,135)( 87,134)( 88,130)( 89,132)
( 90,131);;
s1 := (  1, 46)(  2, 48)(  3, 47)(  4, 52)(  5, 54)(  6, 53)(  7, 49)(  8, 51)
(  9, 50)( 10, 55)( 11, 57)( 12, 56)( 13, 61)( 14, 63)( 15, 62)( 16, 58)
( 17, 60)( 18, 59)( 19, 64)( 20, 66)( 21, 65)( 22, 70)( 23, 72)( 24, 71)
( 25, 67)( 26, 69)( 27, 68)( 28, 73)( 29, 75)( 30, 74)( 31, 79)( 32, 81)
( 33, 80)( 34, 76)( 35, 78)( 36, 77)( 37, 82)( 38, 84)( 39, 83)( 40, 88)
( 41, 90)( 42, 89)( 43, 85)( 44, 87)( 45, 86)( 92, 93)( 94, 97)( 95, 99)
( 96, 98)(101,102)(103,106)(104,108)(105,107)(110,111)(112,115)(113,117)
(114,116)(119,120)(121,124)(122,126)(123,125)(128,129)(130,133)(131,135)
(132,134);;
s2 := (  4,  8)(  5,  9)(  6,  7)( 10, 37)( 11, 38)( 12, 39)( 13, 44)( 14, 45)
( 15, 43)( 16, 42)( 17, 40)( 18, 41)( 19, 28)( 20, 29)( 21, 30)( 22, 35)
( 23, 36)( 24, 34)( 25, 33)( 26, 31)( 27, 32)( 46, 50)( 47, 51)( 48, 49)
( 55, 86)( 56, 87)( 57, 85)( 58, 84)( 59, 82)( 60, 83)( 61, 88)( 62, 89)
( 63, 90)( 64, 77)( 65, 78)( 66, 76)( 67, 75)( 68, 73)( 69, 74)( 70, 79)
( 71, 80)( 72, 81)( 91, 99)( 92, 97)( 93, 98)(100,135)(101,133)(102,134)
(103,130)(104,131)(105,132)(106,128)(107,129)(108,127)(109,126)(110,124)
(111,125)(112,121)(113,122)(114,123)(115,119)(116,120)(117,118);;
s3 := (  1, 10)(  2, 11)(  3, 12)(  4, 16)(  5, 17)(  6, 18)(  7, 13)(  8, 14)
(  9, 15)( 19, 37)( 20, 38)( 21, 39)( 22, 43)( 23, 44)( 24, 45)( 25, 40)
( 26, 41)( 27, 42)( 31, 34)( 32, 35)( 33, 36)( 46, 55)( 47, 56)( 48, 57)
( 49, 61)( 50, 62)( 51, 63)( 52, 58)( 53, 59)( 54, 60)( 64, 82)( 65, 83)
( 66, 84)( 67, 88)( 68, 89)( 69, 90)( 70, 85)( 71, 86)( 72, 87)( 76, 79)
( 77, 80)( 78, 81)( 91,100)( 92,101)( 93,102)( 94,106)( 95,107)( 96,108)
( 97,103)( 98,104)( 99,105)(109,127)(110,128)(111,129)(112,133)(113,134)
(114,135)(115,130)(116,131)(117,132)(121,124)(122,125)(123,126);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(135)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 46, 91)( 47, 93)( 48, 92)
( 49, 97)( 50, 99)( 51, 98)( 52, 94)( 53, 96)( 54, 95)( 55,100)( 56,102)
( 57,101)( 58,106)( 59,108)( 60,107)( 61,103)( 62,105)( 63,104)( 64,109)
( 65,111)( 66,110)( 67,115)( 68,117)( 69,116)( 70,112)( 71,114)( 72,113)
( 73,118)( 74,120)( 75,119)( 76,124)( 77,126)( 78,125)( 79,121)( 80,123)
( 81,122)( 82,127)( 83,129)( 84,128)( 85,133)( 86,135)( 87,134)( 88,130)
( 89,132)( 90,131);
s1 := Sym(135)!(  1, 46)(  2, 48)(  3, 47)(  4, 52)(  5, 54)(  6, 53)(  7, 49)
(  8, 51)(  9, 50)( 10, 55)( 11, 57)( 12, 56)( 13, 61)( 14, 63)( 15, 62)
( 16, 58)( 17, 60)( 18, 59)( 19, 64)( 20, 66)( 21, 65)( 22, 70)( 23, 72)
( 24, 71)( 25, 67)( 26, 69)( 27, 68)( 28, 73)( 29, 75)( 30, 74)( 31, 79)
( 32, 81)( 33, 80)( 34, 76)( 35, 78)( 36, 77)( 37, 82)( 38, 84)( 39, 83)
( 40, 88)( 41, 90)( 42, 89)( 43, 85)( 44, 87)( 45, 86)( 92, 93)( 94, 97)
( 95, 99)( 96, 98)(101,102)(103,106)(104,108)(105,107)(110,111)(112,115)
(113,117)(114,116)(119,120)(121,124)(122,126)(123,125)(128,129)(130,133)
(131,135)(132,134);
s2 := Sym(135)!(  4,  8)(  5,  9)(  6,  7)( 10, 37)( 11, 38)( 12, 39)( 13, 44)
( 14, 45)( 15, 43)( 16, 42)( 17, 40)( 18, 41)( 19, 28)( 20, 29)( 21, 30)
( 22, 35)( 23, 36)( 24, 34)( 25, 33)( 26, 31)( 27, 32)( 46, 50)( 47, 51)
( 48, 49)( 55, 86)( 56, 87)( 57, 85)( 58, 84)( 59, 82)( 60, 83)( 61, 88)
( 62, 89)( 63, 90)( 64, 77)( 65, 78)( 66, 76)( 67, 75)( 68, 73)( 69, 74)
( 70, 79)( 71, 80)( 72, 81)( 91, 99)( 92, 97)( 93, 98)(100,135)(101,133)
(102,134)(103,130)(104,131)(105,132)(106,128)(107,129)(108,127)(109,126)
(110,124)(111,125)(112,121)(113,122)(114,123)(115,119)(116,120)(117,118);
s3 := Sym(135)!(  1, 10)(  2, 11)(  3, 12)(  4, 16)(  5, 17)(  6, 18)(  7, 13)
(  8, 14)(  9, 15)( 19, 37)( 20, 38)( 21, 39)( 22, 43)( 23, 44)( 24, 45)
( 25, 40)( 26, 41)( 27, 42)( 31, 34)( 32, 35)( 33, 36)( 46, 55)( 47, 56)
( 48, 57)( 49, 61)( 50, 62)( 51, 63)( 52, 58)( 53, 59)( 54, 60)( 64, 82)
( 65, 83)( 66, 84)( 67, 88)( 68, 89)( 69, 90)( 70, 85)( 71, 86)( 72, 87)
( 76, 79)( 77, 80)( 78, 81)( 91,100)( 92,101)( 93,102)( 94,106)( 95,107)
( 96,108)( 97,103)( 98,104)( 99,105)(109,127)(110,128)(111,129)(112,133)
(113,134)(114,135)(115,130)(116,131)(117,132)(121,124)(122,125)(123,126);
poly := sub<Sym(135)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope