include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {34,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {34,6,4}*1632b
if this polytope has a name.
Group : SmallGroup(1632,1195)
Rank : 4
Schlafli Type : {34,6,4}
Number of vertices, edges, etc : 34, 102, 12, 4
Order of s0s1s2s3 : 102
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
17-fold quotients : {2,6,4}*96c
34-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 65)( 6, 66)( 7, 67)( 8, 68)( 9, 61)( 10, 62)( 11, 63)( 12, 64)
( 13, 57)( 14, 58)( 15, 59)( 16, 60)( 17, 53)( 18, 54)( 19, 55)( 20, 56)
( 21, 49)( 22, 50)( 23, 51)( 24, 52)( 25, 45)( 26, 46)( 27, 47)( 28, 48)
( 29, 41)( 30, 42)( 31, 43)( 32, 44)( 33, 37)( 34, 38)( 35, 39)( 36, 40)
( 73,133)( 74,134)( 75,135)( 76,136)( 77,129)( 78,130)( 79,131)( 80,132)
( 81,125)( 82,126)( 83,127)( 84,128)( 85,121)( 86,122)( 87,123)( 88,124)
( 89,117)( 90,118)( 91,119)( 92,120)( 93,113)( 94,114)( 95,115)( 96,116)
( 97,109)( 98,110)( 99,111)(100,112)(101,105)(102,106)(103,107)(104,108)
(141,201)(142,202)(143,203)(144,204)(145,197)(146,198)(147,199)(148,200)
(149,193)(150,194)(151,195)(152,196)(153,189)(154,190)(155,191)(156,192)
(157,185)(158,186)(159,187)(160,188)(161,181)(162,182)(163,183)(164,184)
(165,177)(166,178)(167,179)(168,180)(169,173)(170,174)(171,175)(172,176)
(209,269)(210,270)(211,271)(212,272)(213,265)(214,266)(215,267)(216,268)
(217,261)(218,262)(219,263)(220,264)(221,257)(222,258)(223,259)(224,260)
(225,253)(226,254)(227,255)(228,256)(229,249)(230,250)(231,251)(232,252)
(233,245)(234,246)(235,247)(236,248)(237,241)(238,242)(239,243)(240,244)
(277,337)(278,338)(279,339)(280,340)(281,333)(282,334)(283,335)(284,336)
(285,329)(286,330)(287,331)(288,332)(289,325)(290,326)(291,327)(292,328)
(293,321)(294,322)(295,323)(296,324)(297,317)(298,318)(299,319)(300,320)
(301,313)(302,314)(303,315)(304,316)(305,309)(306,310)(307,311)(308,312)
(345,405)(346,406)(347,407)(348,408)(349,401)(350,402)(351,403)(352,404)
(353,397)(354,398)(355,399)(356,400)(357,393)(358,394)(359,395)(360,396)
(361,389)(362,390)(363,391)(364,392)(365,385)(366,386)(367,387)(368,388)
(369,381)(370,382)(371,383)(372,384)(373,377)(374,378)(375,379)(376,380);;
s1 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9, 65)( 10, 66)( 11, 68)( 12, 67)
( 13, 61)( 14, 62)( 15, 64)( 16, 63)( 17, 57)( 18, 58)( 19, 60)( 20, 59)
( 21, 53)( 22, 54)( 23, 56)( 24, 55)( 25, 49)( 26, 50)( 27, 52)( 28, 51)
( 29, 45)( 30, 46)( 31, 48)( 32, 47)( 33, 41)( 34, 42)( 35, 44)( 36, 43)
( 39, 40)( 69,141)( 70,142)( 71,144)( 72,143)( 73,137)( 74,138)( 75,140)
( 76,139)( 77,201)( 78,202)( 79,204)( 80,203)( 81,197)( 82,198)( 83,200)
( 84,199)( 85,193)( 86,194)( 87,196)( 88,195)( 89,189)( 90,190)( 91,192)
( 92,191)( 93,185)( 94,186)( 95,188)( 96,187)( 97,181)( 98,182)( 99,184)
(100,183)(101,177)(102,178)(103,180)(104,179)(105,173)(106,174)(107,176)
(108,175)(109,169)(110,170)(111,172)(112,171)(113,165)(114,166)(115,168)
(116,167)(117,161)(118,162)(119,164)(120,163)(121,157)(122,158)(123,160)
(124,159)(125,153)(126,154)(127,156)(128,155)(129,149)(130,150)(131,152)
(132,151)(133,145)(134,146)(135,148)(136,147)(205,209)(206,210)(207,212)
(208,211)(213,269)(214,270)(215,272)(216,271)(217,265)(218,266)(219,268)
(220,267)(221,261)(222,262)(223,264)(224,263)(225,257)(226,258)(227,260)
(228,259)(229,253)(230,254)(231,256)(232,255)(233,249)(234,250)(235,252)
(236,251)(237,245)(238,246)(239,248)(240,247)(243,244)(273,345)(274,346)
(275,348)(276,347)(277,341)(278,342)(279,344)(280,343)(281,405)(282,406)
(283,408)(284,407)(285,401)(286,402)(287,404)(288,403)(289,397)(290,398)
(291,400)(292,399)(293,393)(294,394)(295,396)(296,395)(297,389)(298,390)
(299,392)(300,391)(301,385)(302,386)(303,388)(304,387)(305,381)(306,382)
(307,384)(308,383)(309,377)(310,378)(311,380)(312,379)(313,373)(314,374)
(315,376)(316,375)(317,369)(318,370)(319,372)(320,371)(321,365)(322,366)
(323,368)(324,367)(325,361)(326,362)(327,364)(328,363)(329,357)(330,358)
(331,360)(332,359)(333,353)(334,354)(335,356)(336,355)(337,349)(338,350)
(339,352)(340,351);;
s2 := ( 1,273)( 2,276)( 3,275)( 4,274)( 5,277)( 6,280)( 7,279)( 8,278)
( 9,281)( 10,284)( 11,283)( 12,282)( 13,285)( 14,288)( 15,287)( 16,286)
( 17,289)( 18,292)( 19,291)( 20,290)( 21,293)( 22,296)( 23,295)( 24,294)
( 25,297)( 26,300)( 27,299)( 28,298)( 29,301)( 30,304)( 31,303)( 32,302)
( 33,305)( 34,308)( 35,307)( 36,306)( 37,309)( 38,312)( 39,311)( 40,310)
( 41,313)( 42,316)( 43,315)( 44,314)( 45,317)( 46,320)( 47,319)( 48,318)
( 49,321)( 50,324)( 51,323)( 52,322)( 53,325)( 54,328)( 55,327)( 56,326)
( 57,329)( 58,332)( 59,331)( 60,330)( 61,333)( 62,336)( 63,335)( 64,334)
( 65,337)( 66,340)( 67,339)( 68,338)( 69,205)( 70,208)( 71,207)( 72,206)
( 73,209)( 74,212)( 75,211)( 76,210)( 77,213)( 78,216)( 79,215)( 80,214)
( 81,217)( 82,220)( 83,219)( 84,218)( 85,221)( 86,224)( 87,223)( 88,222)
( 89,225)( 90,228)( 91,227)( 92,226)( 93,229)( 94,232)( 95,231)( 96,230)
( 97,233)( 98,236)( 99,235)(100,234)(101,237)(102,240)(103,239)(104,238)
(105,241)(106,244)(107,243)(108,242)(109,245)(110,248)(111,247)(112,246)
(113,249)(114,252)(115,251)(116,250)(117,253)(118,256)(119,255)(120,254)
(121,257)(122,260)(123,259)(124,258)(125,261)(126,264)(127,263)(128,262)
(129,265)(130,268)(131,267)(132,266)(133,269)(134,272)(135,271)(136,270)
(137,341)(138,344)(139,343)(140,342)(141,345)(142,348)(143,347)(144,346)
(145,349)(146,352)(147,351)(148,350)(149,353)(150,356)(151,355)(152,354)
(153,357)(154,360)(155,359)(156,358)(157,361)(158,364)(159,363)(160,362)
(161,365)(162,368)(163,367)(164,366)(165,369)(166,372)(167,371)(168,370)
(169,373)(170,376)(171,375)(172,374)(173,377)(174,380)(175,379)(176,378)
(177,381)(178,384)(179,383)(180,382)(181,385)(182,388)(183,387)(184,386)
(185,389)(186,392)(187,391)(188,390)(189,393)(190,396)(191,395)(192,394)
(193,397)(194,400)(195,399)(196,398)(197,401)(198,404)(199,403)(200,402)
(201,405)(202,408)(203,407)(204,406);;
s3 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)
(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)
(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)
(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)
(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)
(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)
(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256)
(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)(271,272)
(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)(287,288)
(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)(303,304)
(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)(319,320)
(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)(335,336)
(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)(351,352)
(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)(367,368)
(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)(383,384)
(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)(399,400)
(401,402)(403,404)(405,406)(407,408);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(408)!( 5, 65)( 6, 66)( 7, 67)( 8, 68)( 9, 61)( 10, 62)( 11, 63)
( 12, 64)( 13, 57)( 14, 58)( 15, 59)( 16, 60)( 17, 53)( 18, 54)( 19, 55)
( 20, 56)( 21, 49)( 22, 50)( 23, 51)( 24, 52)( 25, 45)( 26, 46)( 27, 47)
( 28, 48)( 29, 41)( 30, 42)( 31, 43)( 32, 44)( 33, 37)( 34, 38)( 35, 39)
( 36, 40)( 73,133)( 74,134)( 75,135)( 76,136)( 77,129)( 78,130)( 79,131)
( 80,132)( 81,125)( 82,126)( 83,127)( 84,128)( 85,121)( 86,122)( 87,123)
( 88,124)( 89,117)( 90,118)( 91,119)( 92,120)( 93,113)( 94,114)( 95,115)
( 96,116)( 97,109)( 98,110)( 99,111)(100,112)(101,105)(102,106)(103,107)
(104,108)(141,201)(142,202)(143,203)(144,204)(145,197)(146,198)(147,199)
(148,200)(149,193)(150,194)(151,195)(152,196)(153,189)(154,190)(155,191)
(156,192)(157,185)(158,186)(159,187)(160,188)(161,181)(162,182)(163,183)
(164,184)(165,177)(166,178)(167,179)(168,180)(169,173)(170,174)(171,175)
(172,176)(209,269)(210,270)(211,271)(212,272)(213,265)(214,266)(215,267)
(216,268)(217,261)(218,262)(219,263)(220,264)(221,257)(222,258)(223,259)
(224,260)(225,253)(226,254)(227,255)(228,256)(229,249)(230,250)(231,251)
(232,252)(233,245)(234,246)(235,247)(236,248)(237,241)(238,242)(239,243)
(240,244)(277,337)(278,338)(279,339)(280,340)(281,333)(282,334)(283,335)
(284,336)(285,329)(286,330)(287,331)(288,332)(289,325)(290,326)(291,327)
(292,328)(293,321)(294,322)(295,323)(296,324)(297,317)(298,318)(299,319)
(300,320)(301,313)(302,314)(303,315)(304,316)(305,309)(306,310)(307,311)
(308,312)(345,405)(346,406)(347,407)(348,408)(349,401)(350,402)(351,403)
(352,404)(353,397)(354,398)(355,399)(356,400)(357,393)(358,394)(359,395)
(360,396)(361,389)(362,390)(363,391)(364,392)(365,385)(366,386)(367,387)
(368,388)(369,381)(370,382)(371,383)(372,384)(373,377)(374,378)(375,379)
(376,380);
s1 := Sym(408)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9, 65)( 10, 66)( 11, 68)
( 12, 67)( 13, 61)( 14, 62)( 15, 64)( 16, 63)( 17, 57)( 18, 58)( 19, 60)
( 20, 59)( 21, 53)( 22, 54)( 23, 56)( 24, 55)( 25, 49)( 26, 50)( 27, 52)
( 28, 51)( 29, 45)( 30, 46)( 31, 48)( 32, 47)( 33, 41)( 34, 42)( 35, 44)
( 36, 43)( 39, 40)( 69,141)( 70,142)( 71,144)( 72,143)( 73,137)( 74,138)
( 75,140)( 76,139)( 77,201)( 78,202)( 79,204)( 80,203)( 81,197)( 82,198)
( 83,200)( 84,199)( 85,193)( 86,194)( 87,196)( 88,195)( 89,189)( 90,190)
( 91,192)( 92,191)( 93,185)( 94,186)( 95,188)( 96,187)( 97,181)( 98,182)
( 99,184)(100,183)(101,177)(102,178)(103,180)(104,179)(105,173)(106,174)
(107,176)(108,175)(109,169)(110,170)(111,172)(112,171)(113,165)(114,166)
(115,168)(116,167)(117,161)(118,162)(119,164)(120,163)(121,157)(122,158)
(123,160)(124,159)(125,153)(126,154)(127,156)(128,155)(129,149)(130,150)
(131,152)(132,151)(133,145)(134,146)(135,148)(136,147)(205,209)(206,210)
(207,212)(208,211)(213,269)(214,270)(215,272)(216,271)(217,265)(218,266)
(219,268)(220,267)(221,261)(222,262)(223,264)(224,263)(225,257)(226,258)
(227,260)(228,259)(229,253)(230,254)(231,256)(232,255)(233,249)(234,250)
(235,252)(236,251)(237,245)(238,246)(239,248)(240,247)(243,244)(273,345)
(274,346)(275,348)(276,347)(277,341)(278,342)(279,344)(280,343)(281,405)
(282,406)(283,408)(284,407)(285,401)(286,402)(287,404)(288,403)(289,397)
(290,398)(291,400)(292,399)(293,393)(294,394)(295,396)(296,395)(297,389)
(298,390)(299,392)(300,391)(301,385)(302,386)(303,388)(304,387)(305,381)
(306,382)(307,384)(308,383)(309,377)(310,378)(311,380)(312,379)(313,373)
(314,374)(315,376)(316,375)(317,369)(318,370)(319,372)(320,371)(321,365)
(322,366)(323,368)(324,367)(325,361)(326,362)(327,364)(328,363)(329,357)
(330,358)(331,360)(332,359)(333,353)(334,354)(335,356)(336,355)(337,349)
(338,350)(339,352)(340,351);
s2 := Sym(408)!( 1,273)( 2,276)( 3,275)( 4,274)( 5,277)( 6,280)( 7,279)
( 8,278)( 9,281)( 10,284)( 11,283)( 12,282)( 13,285)( 14,288)( 15,287)
( 16,286)( 17,289)( 18,292)( 19,291)( 20,290)( 21,293)( 22,296)( 23,295)
( 24,294)( 25,297)( 26,300)( 27,299)( 28,298)( 29,301)( 30,304)( 31,303)
( 32,302)( 33,305)( 34,308)( 35,307)( 36,306)( 37,309)( 38,312)( 39,311)
( 40,310)( 41,313)( 42,316)( 43,315)( 44,314)( 45,317)( 46,320)( 47,319)
( 48,318)( 49,321)( 50,324)( 51,323)( 52,322)( 53,325)( 54,328)( 55,327)
( 56,326)( 57,329)( 58,332)( 59,331)( 60,330)( 61,333)( 62,336)( 63,335)
( 64,334)( 65,337)( 66,340)( 67,339)( 68,338)( 69,205)( 70,208)( 71,207)
( 72,206)( 73,209)( 74,212)( 75,211)( 76,210)( 77,213)( 78,216)( 79,215)
( 80,214)( 81,217)( 82,220)( 83,219)( 84,218)( 85,221)( 86,224)( 87,223)
( 88,222)( 89,225)( 90,228)( 91,227)( 92,226)( 93,229)( 94,232)( 95,231)
( 96,230)( 97,233)( 98,236)( 99,235)(100,234)(101,237)(102,240)(103,239)
(104,238)(105,241)(106,244)(107,243)(108,242)(109,245)(110,248)(111,247)
(112,246)(113,249)(114,252)(115,251)(116,250)(117,253)(118,256)(119,255)
(120,254)(121,257)(122,260)(123,259)(124,258)(125,261)(126,264)(127,263)
(128,262)(129,265)(130,268)(131,267)(132,266)(133,269)(134,272)(135,271)
(136,270)(137,341)(138,344)(139,343)(140,342)(141,345)(142,348)(143,347)
(144,346)(145,349)(146,352)(147,351)(148,350)(149,353)(150,356)(151,355)
(152,354)(153,357)(154,360)(155,359)(156,358)(157,361)(158,364)(159,363)
(160,362)(161,365)(162,368)(163,367)(164,366)(165,369)(166,372)(167,371)
(168,370)(169,373)(170,376)(171,375)(172,374)(173,377)(174,380)(175,379)
(176,378)(177,381)(178,384)(179,383)(180,382)(181,385)(182,388)(183,387)
(184,386)(185,389)(186,392)(187,391)(188,390)(189,393)(190,396)(191,395)
(192,394)(193,397)(194,400)(195,399)(196,398)(197,401)(198,404)(199,403)
(200,402)(201,405)(202,408)(203,407)(204,406);
s3 := Sym(408)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)
(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)
(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)
(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)
(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)
(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)
(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)
(255,256)(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)
(271,272)(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)
(287,288)(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)
(303,304)(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)
(319,320)(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)
(335,336)(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)
(351,352)(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)
(367,368)(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)
(383,384)(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)
(399,400)(401,402)(403,404)(405,406)(407,408);
poly := sub<Sym(408)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s3*s2*s3*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope