include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,26,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,26,2}*1664
if this polytope has a name.
Group : SmallGroup(1664,17724)
Rank : 5
Schlafli Type : {4,4,26,2}
Number of vertices, edges, etc : 4, 8, 52, 26, 2
Order of s0s1s2s3s4 : 52
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,26,2}*832, {4,2,26,2}*832
4-fold quotients : {4,2,13,2}*416, {2,2,26,2}*416
8-fold quotients : {2,2,13,2}*208
13-fold quotients : {4,4,2,2}*128
26-fold quotients : {2,4,2,2}*64, {4,2,2,2}*64
52-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 53, 66)( 54, 67)( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)( 60, 73)
( 61, 74)( 62, 75)( 63, 76)( 64, 77)( 65, 78)( 79, 92)( 80, 93)( 81, 94)
( 82, 95)( 83, 96)( 84, 97)( 85, 98)( 86, 99)( 87,100)( 88,101)( 89,102)
( 90,103)( 91,104);;
s1 := ( 1, 53)( 2, 54)( 3, 55)( 4, 56)( 5, 57)( 6, 58)( 7, 59)( 8, 60)
( 9, 61)( 10, 62)( 11, 63)( 12, 64)( 13, 65)( 14, 66)( 15, 67)( 16, 68)
( 17, 69)( 18, 70)( 19, 71)( 20, 72)( 21, 73)( 22, 74)( 23, 75)( 24, 76)
( 25, 77)( 26, 78)( 27, 79)( 28, 80)( 29, 81)( 30, 82)( 31, 83)( 32, 84)
( 33, 85)( 34, 86)( 35, 87)( 36, 88)( 37, 89)( 38, 90)( 39, 91)( 40, 92)
( 41, 93)( 42, 94)( 43, 95)( 44, 96)( 45, 97)( 46, 98)( 47, 99)( 48,100)
( 49,101)( 50,102)( 51,103)( 52,104);;
s2 := ( 2, 13)( 3, 12)( 4, 11)( 5, 10)( 6, 9)( 7, 8)( 15, 26)( 16, 25)
( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 28, 39)( 29, 38)( 30, 37)( 31, 36)
( 32, 35)( 33, 34)( 41, 52)( 42, 51)( 43, 50)( 44, 49)( 45, 48)( 46, 47)
( 53, 79)( 54, 91)( 55, 90)( 56, 89)( 57, 88)( 58, 87)( 59, 86)( 60, 85)
( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 92)( 67,104)( 68,103)
( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)( 75, 96)( 76, 95)
( 77, 94)( 78, 93);;
s3 := ( 1, 2)( 3, 13)( 4, 12)( 5, 11)( 6, 10)( 7, 9)( 14, 15)( 16, 26)
( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)( 31, 37)
( 32, 36)( 33, 35)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)( 46, 48)
( 53, 54)( 55, 65)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 66, 67)( 68, 78)
( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 79, 80)( 81, 91)( 82, 90)( 83, 89)
( 84, 88)( 85, 87)( 92, 93)( 94,104)( 95,103)( 96,102)( 97,101)( 98,100);;
s4 := (105,106);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(106)!( 53, 66)( 54, 67)( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)
( 60, 73)( 61, 74)( 62, 75)( 63, 76)( 64, 77)( 65, 78)( 79, 92)( 80, 93)
( 81, 94)( 82, 95)( 83, 96)( 84, 97)( 85, 98)( 86, 99)( 87,100)( 88,101)
( 89,102)( 90,103)( 91,104);
s1 := Sym(106)!( 1, 53)( 2, 54)( 3, 55)( 4, 56)( 5, 57)( 6, 58)( 7, 59)
( 8, 60)( 9, 61)( 10, 62)( 11, 63)( 12, 64)( 13, 65)( 14, 66)( 15, 67)
( 16, 68)( 17, 69)( 18, 70)( 19, 71)( 20, 72)( 21, 73)( 22, 74)( 23, 75)
( 24, 76)( 25, 77)( 26, 78)( 27, 79)( 28, 80)( 29, 81)( 30, 82)( 31, 83)
( 32, 84)( 33, 85)( 34, 86)( 35, 87)( 36, 88)( 37, 89)( 38, 90)( 39, 91)
( 40, 92)( 41, 93)( 42, 94)( 43, 95)( 44, 96)( 45, 97)( 46, 98)( 47, 99)
( 48,100)( 49,101)( 50,102)( 51,103)( 52,104);
s2 := Sym(106)!( 2, 13)( 3, 12)( 4, 11)( 5, 10)( 6, 9)( 7, 8)( 15, 26)
( 16, 25)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 28, 39)( 29, 38)( 30, 37)
( 31, 36)( 32, 35)( 33, 34)( 41, 52)( 42, 51)( 43, 50)( 44, 49)( 45, 48)
( 46, 47)( 53, 79)( 54, 91)( 55, 90)( 56, 89)( 57, 88)( 58, 87)( 59, 86)
( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 92)( 67,104)
( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)( 75, 96)
( 76, 95)( 77, 94)( 78, 93);
s3 := Sym(106)!( 1, 2)( 3, 13)( 4, 12)( 5, 11)( 6, 10)( 7, 9)( 14, 15)
( 16, 26)( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)
( 31, 37)( 32, 36)( 33, 35)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)
( 46, 48)( 53, 54)( 55, 65)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 66, 67)
( 68, 78)( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 79, 80)( 81, 91)( 82, 90)
( 83, 89)( 84, 88)( 85, 87)( 92, 93)( 94,104)( 95,103)( 96,102)( 97,101)
( 98,100);
s4 := Sym(106)!(105,106);
poly := sub<Sym(106)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope