include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,4,26,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,26,2}*1664
if this polytope has a name.
Group : SmallGroup(1664,19301)
Rank : 6
Schlafli Type : {2,2,4,26,2}
Number of vertices, edges, etc : 2, 2, 4, 52, 26, 2
Order of s0s1s2s3s4s5 : 52
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,26,2}*832
4-fold quotients : {2,2,2,13,2}*416
13-fold quotients : {2,2,4,2,2}*128
26-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(40,53)
(41,54)(42,55)(43,56);;
s3 := ( 5,31)( 6,43)( 7,42)( 8,41)( 9,40)(10,39)(11,38)(12,37)(13,36)(14,35)
(15,34)(16,33)(17,32)(18,44)(19,56)(20,55)(21,54)(22,53)(23,52)(24,51)(25,50)
(26,49)(27,48)(28,47)(29,46)(30,45);;
s4 := ( 5, 6)( 7,17)( 8,16)( 9,15)(10,14)(11,13)(18,19)(20,30)(21,29)(22,28)
(23,27)(24,26)(31,32)(33,43)(34,42)(35,41)(36,40)(37,39)(44,45)(46,56)(47,55)
(48,54)(49,53)(50,52);;
s5 := (57,58);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(58)!(1,2);
s1 := Sym(58)!(3,4);
s2 := Sym(58)!(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)
(40,53)(41,54)(42,55)(43,56);
s3 := Sym(58)!( 5,31)( 6,43)( 7,42)( 8,41)( 9,40)(10,39)(11,38)(12,37)(13,36)
(14,35)(15,34)(16,33)(17,32)(18,44)(19,56)(20,55)(21,54)(22,53)(23,52)(24,51)
(25,50)(26,49)(27,48)(28,47)(29,46)(30,45);
s4 := Sym(58)!( 5, 6)( 7,17)( 8,16)( 9,15)(10,14)(11,13)(18,19)(20,30)(21,29)
(22,28)(23,27)(24,26)(31,32)(33,43)(34,42)(35,41)(36,40)(37,39)(44,45)(46,56)
(47,55)(48,54)(49,53)(50,52);
s5 := Sym(58)!(57,58);
poly := sub<Sym(58)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope