include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,2,35}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,2,35}*1680
if this polytope has a name.
Group : SmallGroup(1680,797)
Rank : 4
Schlafli Type : {12,2,35}
Number of vertices, edges, etc : 12, 12, 35, 35
Order of s0s1s2s3 : 420
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,2,35}*840
3-fold quotients : {4,2,35}*560
4-fold quotients : {3,2,35}*420
5-fold quotients : {12,2,7}*336
6-fold quotients : {2,2,35}*280
7-fold quotients : {12,2,5}*240
10-fold quotients : {6,2,7}*168
14-fold quotients : {6,2,5}*120
15-fold quotients : {4,2,7}*112
20-fold quotients : {3,2,7}*84
21-fold quotients : {4,2,5}*80
28-fold quotients : {3,2,5}*60
30-fold quotients : {2,2,7}*56
42-fold quotients : {2,2,5}*40
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12);;
s1 := ( 1, 7)( 2, 4)( 3,11)( 5, 8)( 6, 9)(10,12);;
s2 := (14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)
(34,35)(36,37)(38,39)(40,41)(42,43)(44,45)(46,47);;
s3 := (13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)
(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(47)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12);
s1 := Sym(47)!( 1, 7)( 2, 4)( 3,11)( 5, 8)( 6, 9)(10,12);
s2 := Sym(47)!(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)
(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)(44,45)(46,47);
s3 := Sym(47)!(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)
(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46);
poly := sub<Sym(47)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope