include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {105,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {105,6}*1680
if this polytope has a name.
Group : SmallGroup(1680,955)
Rank : 3
Schlafli Type : {105,6}
Number of vertices, edges, etc : 140, 420, 8
Order of s0s1s2 : 140
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {21,6}*336
7-fold quotients : {15,6}*240
12-fold quotients : {35,2}*140
35-fold quotients : {3,6}*48
60-fold quotients : {7,2}*28
70-fold quotients : {3,3}*24
84-fold quotients : {5,2}*20
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 25)( 6, 26)( 7, 28)( 8, 27)( 9, 21)( 10, 22)( 11, 24)
( 12, 23)( 13, 17)( 14, 18)( 15, 20)( 16, 19)( 29,113)( 30,114)( 31,116)
( 32,115)( 33,137)( 34,138)( 35,140)( 36,139)( 37,133)( 38,134)( 39,136)
( 40,135)( 41,129)( 42,130)( 43,132)( 44,131)( 45,125)( 46,126)( 47,128)
( 48,127)( 49,121)( 50,122)( 51,124)( 52,123)( 53,117)( 54,118)( 55,120)
( 56,119)( 57, 85)( 58, 86)( 59, 88)( 60, 87)( 61,109)( 62,110)( 63,112)
( 64,111)( 65,105)( 66,106)( 67,108)( 68,107)( 69,101)( 70,102)( 71,104)
( 72,103)( 73, 97)( 74, 98)( 75,100)( 76, 99)( 77, 93)( 78, 94)( 79, 96)
( 80, 95)( 81, 89)( 82, 90)( 83, 92)( 84, 91);;
s1 := ( 1, 33)( 2, 36)( 3, 35)( 4, 34)( 5, 29)( 6, 32)( 7, 31)( 8, 30)
( 9, 53)( 10, 56)( 11, 55)( 12, 54)( 13, 49)( 14, 52)( 15, 51)( 16, 50)
( 17, 45)( 18, 48)( 19, 47)( 20, 46)( 21, 41)( 22, 44)( 23, 43)( 24, 42)
( 25, 37)( 26, 40)( 27, 39)( 28, 38)( 57,117)( 58,120)( 59,119)( 60,118)
( 61,113)( 62,116)( 63,115)( 64,114)( 65,137)( 66,140)( 67,139)( 68,138)
( 69,133)( 70,136)( 71,135)( 72,134)( 73,129)( 74,132)( 75,131)( 76,130)
( 77,125)( 78,128)( 79,127)( 80,126)( 81,121)( 82,124)( 83,123)( 84,122)
( 85, 89)( 86, 92)( 87, 91)( 88, 90)( 93,109)( 94,112)( 95,111)( 96,110)
( 97,105)( 98,108)( 99,107)(100,106)(102,104);;
s2 := ( 1, 2)( 5, 6)( 9, 10)( 13, 14)( 17, 18)( 21, 22)( 25, 26)( 29, 30)
( 33, 34)( 37, 38)( 41, 42)( 45, 46)( 49, 50)( 53, 54)( 57, 58)( 61, 62)
( 65, 66)( 69, 70)( 73, 74)( 77, 78)( 81, 82)( 85, 86)( 89, 90)( 93, 94)
( 97, 98)(101,102)(105,106)(109,110)(113,114)(117,118)(121,122)(125,126)
(129,130)(133,134)(137,138);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(140)!( 3, 4)( 5, 25)( 6, 26)( 7, 28)( 8, 27)( 9, 21)( 10, 22)
( 11, 24)( 12, 23)( 13, 17)( 14, 18)( 15, 20)( 16, 19)( 29,113)( 30,114)
( 31,116)( 32,115)( 33,137)( 34,138)( 35,140)( 36,139)( 37,133)( 38,134)
( 39,136)( 40,135)( 41,129)( 42,130)( 43,132)( 44,131)( 45,125)( 46,126)
( 47,128)( 48,127)( 49,121)( 50,122)( 51,124)( 52,123)( 53,117)( 54,118)
( 55,120)( 56,119)( 57, 85)( 58, 86)( 59, 88)( 60, 87)( 61,109)( 62,110)
( 63,112)( 64,111)( 65,105)( 66,106)( 67,108)( 68,107)( 69,101)( 70,102)
( 71,104)( 72,103)( 73, 97)( 74, 98)( 75,100)( 76, 99)( 77, 93)( 78, 94)
( 79, 96)( 80, 95)( 81, 89)( 82, 90)( 83, 92)( 84, 91);
s1 := Sym(140)!( 1, 33)( 2, 36)( 3, 35)( 4, 34)( 5, 29)( 6, 32)( 7, 31)
( 8, 30)( 9, 53)( 10, 56)( 11, 55)( 12, 54)( 13, 49)( 14, 52)( 15, 51)
( 16, 50)( 17, 45)( 18, 48)( 19, 47)( 20, 46)( 21, 41)( 22, 44)( 23, 43)
( 24, 42)( 25, 37)( 26, 40)( 27, 39)( 28, 38)( 57,117)( 58,120)( 59,119)
( 60,118)( 61,113)( 62,116)( 63,115)( 64,114)( 65,137)( 66,140)( 67,139)
( 68,138)( 69,133)( 70,136)( 71,135)( 72,134)( 73,129)( 74,132)( 75,131)
( 76,130)( 77,125)( 78,128)( 79,127)( 80,126)( 81,121)( 82,124)( 83,123)
( 84,122)( 85, 89)( 86, 92)( 87, 91)( 88, 90)( 93,109)( 94,112)( 95,111)
( 96,110)( 97,105)( 98,108)( 99,107)(100,106)(102,104);
s2 := Sym(140)!( 1, 2)( 5, 6)( 9, 10)( 13, 14)( 17, 18)( 21, 22)( 25, 26)
( 29, 30)( 33, 34)( 37, 38)( 41, 42)( 45, 46)( 49, 50)( 53, 54)( 57, 58)
( 61, 62)( 65, 66)( 69, 70)( 73, 74)( 77, 78)( 81, 82)( 85, 86)( 89, 90)
( 93, 94)( 97, 98)(101,102)(105,106)(109,110)(113,114)(117,118)(121,122)
(125,126)(129,130)(133,134)(137,138);
poly := sub<Sym(140)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0 >;
References : None.
to this polytope